1. Nội dung câu hỏi
Một chiếc thang có dạng hình thang cân cao \(6{\rm{\;m}}\), hai chân thang cách nhau \(80{\rm{\;cm}}\), hai ngọn thang cách nhau \(60{\rm{\;cm}}\).Thang được dựa vào bờ tường như hình bên. Tính góc tạo giữa đường thẳng chân tường và cạnh cột thang (tính gần đúng theo đơn vị độ, làm tròn kết quả đến chữ số thập phân thứ hai).
2. Phương pháp giải
Gọi \(A,B\) là hai điểm tại hai vị tri chân thang và \(C,D\) là hai điểm tại hai vị trí ngọn thang, \(EF\) là đường chân tường.
Ta có \(EF//AB\) nên \(\left( {EF,AC} \right) = \left( {AB,AC} \right) = \widehat {BAC}\).
Kẻ \(CH\) vuông góc với \(AB\) tại \(H\), tính \(AH = \frac{{AB - CD}}{2}\).
Tam giác \(ACH\) vuông tại \(H\) nên \({\rm{cos}}\widehat {CAH}\), suy ra \(\widehat {CAH}\)
3. Lời giải chi tiết
Gọi \(A,B\) là hai điểm tại hai vị tri chân thang và \(C,D\) là hai điểm tại hai vị trí ngọn thang, \(EF\) là đường chân tường. Ta có \(EF//AB\) nên \(\left( {EF,AC} \right) = \left( {AB,AC} \right) = \widehat {BAC}\).
Kẻ \(CH\) vuông góc với \(AB\) tại \(H\), khi đó \(AH = \frac{{AB - CD}}{2} = 10\left( {{\rm{\;cm}}} \right) = 0,1\left( {{\rm{\;m}}} \right)\).
Tam giác \(ACH\) vuông tại \(H\) nên \({\rm{cos}}\widehat {CAH} = \frac{{AH}}{{AC}} = \frac{{0,1}}{6} = \frac{1}{{60}}\), suy ra \(\widehat {CAH} \approx 89,{05^ \circ }\).
Vậy góc tạo giữa đường thẳng chân tường và cạnh cột thang bằng khoảng \(89,{05^ \circ }\).
Đề kiểm tra giữa học kì 1
Tải 10 đề kiểm tra 45 phút (1 tiết) - Chương II - Hóa học 11
Chủ đề 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chủ đề 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Bài 7. Pháp luật về quản lí vũ khí, vật liệu nổ, công cụ hỗ trợ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11