Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Trục căn thức ở mẫu:
LG câu a
LG câu a
\( \displaystyle{1 \over {\sqrt 3 + \sqrt 2 + 1}}\)
Phương pháp giải:
Áp dụng:
\(\dfrac{A}{{\sqrt B }} = \dfrac{{A\sqrt B }}{B}\)
\(\dfrac{A}{{\sqrt B \pm C}} = \dfrac{{A(\sqrt B \mp C)}}{{B - {C^2}}}\)
(trong điều kiện các biểu thức có nghĩa)
Lời giải chi tiết:
\( \displaystyle\eqalign{
& {1 \over {\sqrt 3 + \sqrt 2 + 1}}= {1 \over {\sqrt 3 + (\sqrt 2 + 1)}} \cr
& = {{\sqrt 3 - (\sqrt 2 + 1)} \over {\left[ {\sqrt 3 + (\sqrt 2 + 1)} \right]\left[ {\sqrt 3 - (\sqrt 2 + 1)} \right]}} \cr} \)
\( \displaystyle = {{\sqrt 3 - \sqrt 2 - 1} \over {3 - {{(\sqrt 2 + 1)}^2}}} = {{\sqrt 3 - \sqrt 2 - 1} \over {3 - (2 + 2\sqrt 2 + 1)}}\) \( \displaystyle = {{\sqrt 3 - \sqrt 2 - 1} \over { - 2\sqrt 2 }}\)
\( \displaystyle = {{ - \sqrt 2 (\sqrt 3 - \sqrt 2 - 1)} \over {2{{(\sqrt 2 )}^2}}}\) \( \displaystyle = {{ - \sqrt 6 + 2 + \sqrt 2 } \over 4}\)
LG câu b
LG câu b
\( \displaystyle{1 \over {\sqrt 5 - \sqrt 3 + 2}}\)
Phương pháp giải:
Áp dụng:
\(\dfrac{A}{{\sqrt B \pm C}} = \dfrac{{A(\sqrt B \mp C)}}{{B - {C^2}}}\)
(trong điều kiện các biểu thức có nghĩa)
Lời giải chi tiết:
\( \displaystyle{1 \over {\sqrt 5 - \sqrt 3 + 2}}\) \(= \displaystyle{1 \over {\sqrt 5 - (\sqrt 3 - 2)}}\)\( \displaystyle = {{\sqrt 5 + (\sqrt 3 - 2)} \over {\left[ {\sqrt 5 - (\sqrt 3 - 2)} \right]\left[ {\sqrt 5 + (\sqrt 3 - 2)} \right]}}\)
\( \displaystyle = {{\sqrt 5 + \sqrt 3 - 2} \over {5 - {{(\sqrt 3 - 2)}^2}}}\) \( \displaystyle = {{\sqrt 5 + \sqrt 3 - 2} \over {5 - (3 - 4\sqrt 3 + 4)}}\) \( \displaystyle = {{\sqrt 5 + \sqrt 3 - 2} \over {4\sqrt 3 - 2}}\)
\( \displaystyle= {{\sqrt 5 + \sqrt 3 - 2} \over {2(2\sqrt 3 - 1)}}\) \( \displaystyle = {{(\sqrt 5 + \sqrt 3 - 2)(2\sqrt 3 + 1)} \over {2\left[ {(2\sqrt 3 - 1)(2\sqrt 3 + 1)} \right]}}\)
\( \displaystyle = {{2\sqrt {15} + \sqrt 5 + 6 + \sqrt 3 - 4\sqrt 3 - 2} \over {2(12 - 1)}} \)
\( \displaystyle= {{2\sqrt {15} + \sqrt 5 + 4 - 3\sqrt 3 } \over {22}} \)
Bài 38. Phát triển tổng hợp kinh tế và bảo vệ tài nguyên, môi trường Biển - Đảo
Đề thi vào 10 môn Văn Long An
Đề thi học kì 1
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Tiếng Anh lớp 9
Đề thi vào 10 môn Văn Hà Nam