Đề bài
Khoảng cách từ điểm M(4 ; –2) đến đường thẳng ∆: x − 2y + 2 = 0 bằng:
A. \(\frac{{2\sqrt 5 }}{5}\) B. \(2\sqrt 5 \) C. 2. D. \(\sqrt 5 \)
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính khoảng cách từ một điểm \(M({x_M};{y_M})\) đến đường thẳng \(\Delta :ax + by + c = 0\):
\(d(M,\Delta ) = \frac{{\left| {a{x_M} + b{y_M} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\)
Lời giải chi tiết
Ta có: \(d(M,\Delta ) = \frac{{\left| {4 - 2.( - 2) + 2} \right|}}{{\sqrt {{1^2} + {{( - 2)}^2}} }} = 2\sqrt 5 \)
Chọn B
Unit 1: Round the clock
Chương 5. Thủy quyển
Ngữ âm
Tác giả tác phẩm - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Giáo dục kinh tế và pháp luật lớp 10
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10