PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

Bài 78 trang 61 SBT toán 8 tập 2

Đề bài

Chứng tỏ rằng, trong một tam giác thì độ dài một cạnh luôn nhỏ hơn nửa chu vi.

Phương pháp giải - Xem chi tiết

Áp dụng bất đẳng thức tam giác : Trong một tam giác, tổng độ dài hai cạnh bất kỳ bao giờ cũng lớn hơn độ dài cạnh còn lại.

Lời giải chi tiết

Gọi \(a\,,\; b\,, \;c \) lần lượt là độ dài ba cạnh của tam giác.

Chu vi tam giác là \(a + b + c.\)

Nên nửa chu vi tam giác là: \(\dfrac{a+b+c}{2}\)

Theo bất đẳng thức tam giác, ta có :

\(a < b + c \)

\(\Leftrightarrow a + a < a + b + c\)

\(\Leftrightarrow 2a < a + b + c \)

\(\displaystyle \Leftrightarrow a < {{a + b + c} \over 2}\)

Tương tự:

 \(\eqalign{  & b < a + c \cr&\Leftrightarrow b + b < a + b + c \cr&\Leftrightarrow 2b < a + b + c \cr&\Leftrightarrow b < {{a + b + c} \over 2}  \cr  & c < a + b \cr& \Leftrightarrow c + c < a + b + c \cr&\Leftrightarrow 2c < a + b + c \cr&\Leftrightarrow c < {{a + b + c} \over 2} \cr} \)

Vậy trong một tam giác độ dài một cạnh luôn nhỏ hơn nửa chu vi.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved