Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Cạnh huyền của một tam giác vuông lớn hơn một cạnh góc vuông là \(1cm\) và tổng của hai cạnh góc vuông lớn hơn cạnh huyền \(4cm\). Hãy tính các cạnh của tam giác vuông này.
6
Phương pháp giải - Xem chi tiết
Xét tam giác \(ABC\) vuông tại A.
Để giải bài toán ta thực hiện các bước sau:
Bước 1: Thực hiện liên kết các dữ kiện:
\(BC - AB = 1(cm)\)
\(AB + AC - BC = 4(cm)\)
Bước 2: Cộng vế với vế để tìm ra một cạnh trong tam giác.
Bước 3: Sử dụng định lí Pytago để tìm các cạnh còn lại của tam giác.
Lời giải chi tiết
Giả sử tam giác ABC có \(\widehat {BAC} = 90^\circ \)
Theo đề bài, ta có: \(BC - AB = 1(cm)\) (1)
\(AB + AC - BC = 4(cm)\) (2)
Từ (1) và (2) suy ra:
\((BC - AB) + (AB + AC - BC)\)\(=1+4\)
\(\Leftrightarrow BC - AB + AB + AC - BC=5\)
\(\Leftrightarrow AC=5\)
Theo định lý Pytago, ta có: \(B{C^2} = A{B^2} + A{C^2}\) (3)
Từ (1) suy ra: \(BC = AB + 1\) (4)
Thay (4) và (3) ta có:
\(\eqalign{
& {\left( {AB + 1} \right)^2} = A{B^2} + A{C^2} \cr
& \Leftrightarrow A{B^2} + 2AB + 1 = A{B^2} + {5^2} \cr
& \Leftrightarrow 2AB = 24 \cr
& \Leftrightarrow AB = 12\left( {cm} \right) \cr} \)
Thay \(AB = 12\) (cm) vào (1) ta có: \(BC = 12 + 1 = 13(cm)\)
CHƯƠNG IV. HÀM SỐ BẬC HAI VÀ PHƯƠNG TRÌNH BẬC HAI
Đề kiểm tra 15 phút - Chương 2 - Sinh 9
Bài 28
Đề thi vào 10 môn Toán Tiền Giang
Đề thi vào 10 môn Toán Bắc Giang