1. Nội dung câu hỏi
Cho \(\cot x = - 3\), \(\frac{\pi }{2} < x < \pi \). Tính \(\sin x\), \(\cos x\), \(\tan x\).
2. Phương pháp giải
Sử dụng công thức \(\tan x = \frac{1}{{\cot x}}\) để tính \(\tan x\).
Sử dụng công thức \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}}\) và điều kiện \(\frac{\pi }{2} < x < \pi \) để tính \(\sin x\).
Sử dụng công thức \(\cot x = \frac{{\cos x}}{{\sin x}}\) để tính \(\cos x\) theo \(\sin x\) và \(\cot x\).
3. Lời giải chi tiết
Ta có \(\tan x = \frac{1}{{\cot x}} = 1:\left( { - 3} \right) = - \frac{1}{3}\).
Do \(1 + {\cot ^2}x = \frac{1}{{{{\sin }^2}x}} \Rightarrow {\sin ^2}x = \frac{1}{{1 + {{\cot }^2}x}} = \frac{1}{{1 + {{\left( { - 3} \right)}^2}}} = \frac{1}{{10}} \Rightarrow \sin x = \pm \frac{{\sqrt {10} }}{{10}}\)
Vì \(\frac{\pi }{2} < x < \pi \Rightarrow \sin x > 0 \Rightarrow \sin x = \frac{{\sqrt {10} }}{{10}}\).
Vì \(\cot x = \frac{{\cos x}}{{\sin x}} \Rightarrow \cos x = \cot x.\sin x = - 3.\frac{{\sqrt {10} }}{{10}} = - \frac{{3\sqrt {10} }}{{10}}\).
Chủ đề 3: Kĩ thuật động tác giả và chiến thuật tấn công
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 11
Câu hỏi tự luyện Sinh 11
Chuyên đề 1: Phát triển kinh tế và sự biến đổi môi trường tự nhiên
Chuyên đề 1. Phép biến hình phẳng
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11