Chuyên đề 2: Phương pháp quy nạp toán học. Nhị thức Newton

Bài 8 trang 38

Đề bài

Chứng minh công thức nhị thức Newton bằng phương pháp quy nạp:

\({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\) với \(n \in \mathbb{N}*\)

Phương pháp giải - Xem chi tiết

Chứng minh mệnh đề đúng với \(n \ge p\) thì:

Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)

Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.

Lời giải chi tiết

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Ta chứng minh công thức nhị thức Newton bằng phương pháp quy nạp theo n.

Bước 1: Với \(n = 1\) ta có \({(a + b)^1} = C_1^0a + C_1^1b\quad ( = a + b)\)

Như vậy công thức đúng với \(n = 1\)

Bước 2: Giả sử công thức đúng với \(n = k\), nghĩa là có:

\({(a + b)^k} = C_k^0{a^k} + C_k^1{a^{k - 1}}b + ... + C_k^{k - 1}a{b^{k - 1}} + C_k^k{b^k}\)

Ta sẽ chứng minh công thức cũng đúng với \(n = k + 1\), nghĩa là cần chứng minh

\({(a + b)^{k + 1}} = C_{k + 1}^0{a^{k + 1}} + C_{k + 1}^1{a^k}b + ... + C_{k + 1}^ka{b^k} + C_{k + 1}^{k + 1}{b^{k + 1}}\)

Thật vậy ta có

\(\begin{array}{l}{(a + b)^{k + 1}} = {(a + b)^k}(a + b) = \left( {C_k^0{a^k} + C_k^1{a^{k - 1}}b + ... + C_k^{k - 1}a{b^{k - 1}} + C_k^k{b^k}} \right)(a + b)\\ = \left( {C_k^0{a^k} + C_k^1{a^{k - 1}}b + ... + C_k^{k - 1}a{b^{k - 1}} + C_k^k{b^k}} \right)a + \left( {C_k^0{a^k} + C_k^1{a^{k - 1}}b + ... + C_k^{k - 1}a{b^{k - 1}} + C_k^k{b^k}} \right)b\\ = \left( {C_k^0{a^{k + 1}} + C_k^1{a^k}b + ... + C_k^{k - 1}{a^2}{b^{k - 1}} + C_k^ka{b^k}} \right) + \left( {C_k^0{a^k}b + C_k^1{a^{k - 1}}{b^2} + ... + C_k^{k - 1}a{b^k} + C_k^k{b^{k + 1}}} \right)\\ = C_k^0{a^{k + 1}} + \left( {C_k^1 + C_k^0} \right){a^k}b + ... + \left( {C_k^m + C_k^{m - 1}} \right){a^{k + 1 - m}}{b^m} + ... + \left( {C_k^k + C_k^{k - 1}} \right)a{b^k} + C_k^k{b^{k + 1}}\end{array}\)

Mà \(C_k^m + C_k^{m - 1} = C_{k + 1}^m\;(0 \le m \le k),\;C_k^0 = C_{k + 1}^0 = 1,C_k^k = C_{k + 1}^{k + 1} = 1\)

\( \Rightarrow {(a + b)^{k + 1}} = C_{k + 1}^0{a^{k + 1}} + C_{k + 1}^1{a^k}b + ... + C_{k + 1}^ka{b^k} + C_{k + 1}^{k + 1}{b^{k + 1}}\)

Vậy công thức đúng với mọi số tự nhiên \(n \ge 1\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi