Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Cho hàm số \(y = \left( {3 - \sqrt 2} \right)x + 1\).
LG câu a
LG câu a
Hàm số là đồng biến hay nghịch biến trên \(R\)? vì sao?
Phương pháp giải:
Hàm số bậc nhất là hàm số được cho bởi công thức \(y = ax + b\), trong đó \(a,b\) là các số cho trước và \(a \ne 0\).
Hàm số bậc nhất \(y = ax + b\) xác định với mọi giá trị của x thuộc R và có tính chất sau:
a) Đồng biến trên \(R\), khi \(a > 0\).
b) Nghịch biến trên \(R\), khi \(a < 0\).
Lời giải chi tiết:
Hàm số \(y = \left( {3 - \sqrt 2 } \right)x + 1\) có hệ số \(a = 3 - \sqrt 2 \), hệ số \(b = 1\) .
Ta có: \(3 - \sqrt 2 > 0\) nên hàm số đồng biến trên \(R\)
LG câu b
LG câu b
Tính các giá trị tương ứng của \(y\) khi \(x\) nhận các giá trị sau:
\(0;\) \(1;\) \(\sqrt 2 \); \(3 + \sqrt 2 \); \(3 - \sqrt 2 \).
Phương pháp giải:
Thay các giá trị của \(x\) vào hàm số \(y = \left( {3 - \sqrt 2} \right)x + 1\) để tìm \(y\) tương ứng.
Lời giải chi tiết:
Các giá trị của \(y\) được thể hiện trong bảng sau:
LG câu c
LG câu c
Tính các giá trị tương ứng của \(x\) khi \(y\) nhận các giá trị sau:
\(0;\) \(1;\) \(8;\) \(2 + \sqrt 2 \); \(2 - \sqrt 2 \).
Phương pháp giải:
Thay các giá trị của \(y\) vào hàm số \(y = \left( {3 - \sqrt 2} \right)x + 1\) để tìm \(x\) tương ứng.
Lời giải chi tiết:
Các giá trị tương ứng của \(x\):
+) Với \(y = 0\)
\(\eqalign{
& y = 0 \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 0 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = - 1 \cr
& \Leftrightarrow x = {{ - 1} \over {3 - \sqrt 2 }} \cr
& \Leftrightarrow x = {{ - 1\left( {3 + \sqrt 2 } \right)} \over {\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} \cr
& \Leftrightarrow x = {{ - \left( {3 + \sqrt 2 } \right)} \over 7} \cr} \)
+) Với \(y = 1\)
\(\eqalign{
& y = 1 \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 1 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = 0 \cr
& \Leftrightarrow x = 0 \cr} \)
+) Với \(y = 8\)
\(\eqalign{
& y = 8 \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 8 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = 7 \cr
& \Leftrightarrow x = {7 \over {3 - \sqrt 2 }} \cr
& \Leftrightarrow x = {{7\left( {3 + \sqrt 2 } \right)} \over {\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} \cr
& \Leftrightarrow x = {{7\left( {3 + \sqrt 2 } \right)} \over 7} = 3 + \sqrt 2 \cr} \)
+) Với \(y = 2 + \sqrt 2 \)
\(\eqalign{
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 2 + \sqrt 2 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = 1 + \sqrt 2 \cr
& \Leftrightarrow x = {{1 + \sqrt 2 } \over {3 - \sqrt 2 }}\cr &= {{\left( {1 + \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)} \over {\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} \cr
& = {{3 + \sqrt 2 + 3\sqrt 2 + 2} \over {9 - 2}} = {{5 + 4\sqrt 2 } \over 7} \cr} \)
+) Với \(y = 2 - \sqrt 2 \)
\(\eqalign{
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x + 1 = 2 - \sqrt 2 \cr
& \Leftrightarrow \left( {3 - \sqrt 2 } \right)x = 1 - \sqrt 2 \cr
& \Leftrightarrow x = {{1 - \sqrt 2 } \over {3 - \sqrt 2 }}\cr & = {{\left( {1 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)} \over {\left( {3 - \sqrt 2 } \right)\left( {3 + \sqrt 2 } \right)}} \cr
& = {{3 + \sqrt 2 - 3\sqrt 2 - 2} \over {9 - 2}} = {{1 - 2\sqrt 2 } \over 7} \cr} \)
Đề thi vào 10 môn Toán Hà Tĩnh
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 1
Đề thi vào 10 môn Văn Đà Nẵng
Đề thi vào 10 môn Văn Bình Thuận
SOẠN VĂN 9 TẬP 2