Đề bài
Dùng kí hiệu \(\forall \) hoặc \(\exists \) để viết các mệnh đề sau và xét tính đúng sai của chúng
a) Mọi số thực khác 0 nhân với nghịch đảo của nó bằng 1
b) Có số tự nhiên mà bình phương của nó bằng 20
c) Bình phương của mọi số thực đều dương
d) Có ba số tự nhiên khác 0 sao cho tổng bình phương của chúng bằng bình phương số còn lại
Lời giải chi tiết
a) \(\forall x \ne 0,x.\frac{1}{x} = 1\)
Thực vậy, với mọi số thực khác 0 đều có số nghịch đảo và tích của chúng bằng 1. Vậy mệnh đề trên là mệnh đề đúng
b) \(\exists x \in \mathbb{N},{x^2} =20\)
Ta có \({x^2} =20 \Leftrightarrow x = 2\sqrt 5 \notin \mathbb{N}\). Do đó không tồn tại số tự nhiên x để \({x^2} =20\).
Vậy mệnh đề trên là mệnh đề sai
c) \(\forall x \in \mathbb{R},{x^2} > 0\)
Ta thấy khi \(x = 0\) thì bình phương của nó bằng 0 mà số 0 không là số âm cũng không là số dương
Vậy mệnh đề trên là mệnh đề sai
d) \(\exists a;b;c \ne 0,{a^2} + {b^2} = {c^2}\)
Với \(a = 3,b = 4,c = 5\) ta thấy \({3^2} + {4^2} = 25 = {5^2}\)
Vậy mệnh đề trên là mệnh đề đúng.
Chuyên đề 2. Sân khấu hóa tác phẩm văn học
CHỦ ĐỀ IV. PHẢN ỨNG OXI HÓA- KHỬ
Ngữ âm
Chuyên đề 2. Sân khấu hóa tác phẩm văn học
Chuyên đề 1. Tập nghiên cứu và viết báo cáo về một vấn đề văn học dân gian
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10