Bài 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II. Đường tròn
Đề bài
Hãy tính sin α và tan α, nếu:
a) \(\cos \alpha =\displaystyle { 5 \over {13}}\);
b) \(\cos \alpha = \displaystyle {{15} \over {17}}\);
c) \(\cos \alpha = 0,6.\)
Phương pháp giải - Xem chi tiết
Áp dụng kiến thức:
1) \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
2) \(tan\alpha = \displaystyle {{\sin \alpha } \over {\cos \alpha }}\)
Lời giải chi tiết
a) \(cos \alpha =\displaystyle {5 \over {13}}\)
* Ta có:
\({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
Suy ra:
\(\eqalign{
& {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( {{5 \over {13}}} \right)^2} \cr
& = 1 - {{25} \over {169}} = {{144} \over {169}} \cr} \)
Vì \(\sin \alpha > 0\) nên \(\sin \alpha =\displaystyle \sqrt {{{144} \over {169}}} = {{12} \over {13}}\)
* \(tan\alpha = \displaystyle {{\sin \alpha } \over {\cos \alpha }}\)\( = \displaystyle {\displaystyle {{{12} \over {13}}} \over {\displaystyle {5 \over {13}}}} = {{12} \over {13}}.{{13} \over 5} = {{12} \over 5}\)
b) \(\cos \alpha =\displaystyle {{15} \over {17}}\)
* Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
Suy ra:
\(\eqalign{
& {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - {\left( {{{15} \over {17}}} \right)^2} \cr
& = 1 - {{225} \over {289}} = {{64} \over {289}} \cr} \)
Vì \(\sin \alpha > 0\) nên \(\sin \alpha = \displaystyle \sqrt {{{64} \over {289}}} = {8 \over {17}}\)
* \(tan \alpha=\displaystyle {{\sin \alpha } \over {\cos \alpha }} = \displaystyle {{{8 \over {17}}} \over {{{15} \over {17}}}} \)\(=\displaystyle {8 \over {17}}.{{17} \over {15}} = {8 \over {15}}\)
c) \(\cos \alpha = 0,6\)
* Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1.\)
Suy ra: \({\sin ^2}\alpha = 1 - {\cos ^2}\alpha \)
\( = 1 - {(0,6)^2} = 1 - 0,36 = 0,64\)
Vì \(\sin \alpha > 0\) nên \(\sin \alpha = \sqrt {0,64} = 0,8\)
* \(tan\alpha = \displaystyle {{\sin \alpha } \over {\cos \alpha }} = {{0,8} \over {0,6}} = {8 \over 6} = {4 \over 3}\)
Đề kiểm tra 15 phút - Chương 8 - Sinh 9
Đề thi vào 10 môn Văn Bình Định
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Toán lớp 9
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Tiếng Anh lớp 9
CHƯƠNG III. GÓC VỚI ĐƯỜNG TRÒN