1. Nội dung câu hỏi
Cho \(A,B\) là hai biến cố độc lập và \(P\left( {AB} \right) = 0,1;P\left( {A\overline B } \right) = 0,4\). Tìm \(P\left( {A \cup \overline B } \right)\).
2. Phương pháp giải
Áp dụng các công thức sau
\(P\left( {A \cup \overline B } \right) = P\left( A \right) + P\left( {\overline B } \right) - P\left( {A\overline B } \right)\).
\(P\left( A \right) = P\left( {AB} \right) + P\left( {A\overline B } \right),4 = 0,5\).
\(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right)\).
suy ra \(P\left( B \right)\).
\(P\left( {A \cup \overline B } \right) = P\left( A \right) + P\left( {\overline B } \right) - P\left( {A\overline B } \right)\).
3. Lời giải chi tiết
\(P\left( {A \cup \overline B } \right) = P\left( A \right) + P\left( {\overline B } \right) - P\left( {A\overline B } \right)\).
\(P\left( A \right) = P\left( {AB} \right) + P\left( {A\overline B } \right) = 0,1 + 0,4 = 0,5\).
\(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right) = 0,1\).
Khi đó \(0,1 = 0,5 \cdot P\left( B \right)\), suy ra \(P\left( B \right) = 0,2\).
\(P\left( {A \cup \overline B } \right) = P\left( A \right) + P\left( {\overline B } \right) - P\left( {A\overline B } \right) = 0,5 + 0,8 - 0,4 = 0,9\).
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Hóa học lớp 11
CHƯƠNG I. CHUYỂN HÓA VẬT CHẤT VÀ NĂNG LƯỢNG
Unit 2: Vietnam and ASEAN
CHƯƠNG 3: CACBON - SILIC
Chương 1. Cách mạng tư sản và sự phát triển của chủ nghĩa tư bản
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11