Đề bài
Giá trị của biểu thức \({\left( {\sqrt 5 + 1} \right)^5} - {\left( {\sqrt 5 - 1} \right)^5}\) bằng
A. 252
B. 352
C. 452
D. 425
Phương pháp giải - Xem chi tiết
Áp dụng công thức khai triển\({(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}\).
Lời giải chi tiết
Ta có: \({\left( {\sqrt 5 + 1} \right)^5} - {\left( {\sqrt 5 - 1} \right)^5}\)
\(\begin{array}{l} = \left[ {{{\left( {\sqrt 5 } \right)}^5} + 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} + 10{{\left( {\sqrt 5 } \right)}^2} + 5.\sqrt 5 + {1^5}} \right]\\ - \left[ {{{\left( {\sqrt 5 } \right)}^5} + 5{{\left( {\sqrt 5 } \right)}^4}.( - 1) + 10{{\left( {\sqrt 5 } \right)}^3}{{( - 1)}^2} + 10{{\left( {\sqrt 5 } \right)}^2}{{( - 1)}^3} + 5.\sqrt 5 .{{( - 1)}^4} + {{( - 1)}^5}} \right]\\ = \left[ {{{\left( {\sqrt 5 } \right)}^5} + 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} + 10{{\left( {\sqrt 5 } \right)}^2} + 5.\sqrt 5 + {1^5}} \right]\\ - \left[ {{{\left( {\sqrt 5 } \right)}^5} - 5{{\left( {\sqrt 5 } \right)}^4} + 10{{\left( {\sqrt 5 } \right)}^3} - 10{{\left( {\sqrt 5 } \right)}^2} + 5.\sqrt 5 - {1^5}} \right]\\ = {\left( {\sqrt 5 } \right)^5} + 5{\left( {\sqrt 5 } \right)^4} + 10{\left( {\sqrt 5 } \right)^3} + 10{\left( {\sqrt 5 } \right)^2} + 5.\sqrt 5 + {1^5}\\ - {\left( {\sqrt 5 } \right)^5} + 5{\left( {\sqrt 5 } \right)^4} - 10{\left( {\sqrt 5 } \right)^3} + 10{\left( {\sqrt 5 } \right)^2} - 5.\sqrt 5 + {1^5}\\ = 10{\left( {\sqrt 5 } \right)^4} + 20{\left( {\sqrt 5 } \right)^2} + 2\\ = 10.25 + 20.5 + 2\\ = 352\end{array}\)
Chọn B.
Chương III. Động lực học
Huyện Trìa, Đề Hầu, Thầy Nghêu mắc lỡm Thị Hến
Unit 4: International Organizations & Charities
Chương 9: Nguồn lực phát triển kinh tế, một số tiêu chí đánh giá sự phát triển kinh tế
Tổng hợp danh pháp các nguyên tố hóa học
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10