Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 8. Rút gọn biểu thức chứa căn thức bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I. Căn bậc hai. Căn bậc ba
Chứng tỏ giá trị các biểu thức sau là số hữu tỉ:
LG câu a
LG câu a
\( \displaystyle{2 \over {\sqrt 7 - 5}} - {2 \over {\sqrt 7 + 5}}\);
Phương pháp giải:
Áp dụng:
Với \(B \ge 0;\,B \ne C^2,\) ta có: \(\dfrac{A}{{\sqrt B \pm C}} = \dfrac{{A(\sqrt B \mp C)}}{{B - {C^2}}}\)
Lưu ý: Số hữu tỉ là số có dạng \(\dfrac{a}{b}\) trong đó \(a\); \(b\) là các số nguyên và \(b \ne 0\).
Lời giải chi tiết:
Ta có:
\(\begin{array}{l}
\dfrac{2}{{\sqrt 7 - 5}} - \dfrac{2}{{\sqrt 7 + 5}}\\
= \dfrac{{2(\sqrt 7 + 5) - 2(\sqrt 7 - 5)}}{{(\sqrt 7 + 5)\left( {\sqrt 7 - 5} \right)}}\\
= \dfrac{{2\sqrt 7 + 10 - 2\sqrt 7 + 10}}{{7 - 25}}\\
= \dfrac{{20}}{{ - 18}} = - \dfrac{{10}}{9}
\end{array}\)
Vậy \(\dfrac{2}{{\sqrt 7 - 5}} - \dfrac{2}{{\sqrt 7 + 5}} = - \dfrac{{10}}{9}\) là số hữu tỉ
LG câu b
LG câu b
\( \displaystyle\,{{\sqrt 7 + 5} \over {\sqrt 7 - 5}} + {{\sqrt 7 - 5} \over {\sqrt 7 + 5}}.\)
Phương pháp giải:
Áp dụng:
Với \(B,C \ge 0;\,B \ne C,\) ta có: \(\dfrac{A}{{\sqrt B \pm \sqrt C }} = \dfrac{{A(\sqrt B \mp \sqrt C )}}{{B - C}}\)
Lưu ý: Số hữu tỉ là số có dạng \(\dfrac{a}{b}\) trong đó \(a\); \(b\) là các số nguyên và \(b \ne 0\)
Lời giải chi tiết:
\(\begin{array}{l}
\dfrac{{\sqrt 7 + \sqrt 5 }}{{\sqrt 7 - \sqrt 5 }} + \dfrac{{\sqrt 7 - \sqrt 5 }}{{\sqrt 7 + \sqrt 5 }}\\
= \dfrac{{{{(\sqrt 7 + \sqrt 5 )}^2} + {{(\sqrt 7 - \sqrt 5 )}^2}}}{{(\sqrt 7 + \sqrt 5 )\left( {\sqrt 7 - \sqrt 5 } \right)}}\\
= \dfrac{{7 + 2\sqrt {35} + 5 + 7 - 2\sqrt {35} + 5}}{{7 - 5}}\\
= \dfrac{{24}}{2} = 12
\end{array}\)
Vậy \( \displaystyle\,{{\sqrt 7 + 5} \over {\sqrt 7 - 5}} + {{\sqrt 7 - 5} \over {\sqrt 7 + 5}}=12\) là số hữu tỉ.
Đề thi vào 10 môn Văn Kiên Giang
Bài 29
Đề thi vào 10 môn Toán Cà Mau
HỌC KÌ 2
Đề thi vào 10 môn Văn Quảng Trị