PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

Bài 9 trang 184 SBT toán 8 tập 2

Đề bài

Cho hình hộp chữ nhật \(ABCD.A’B’C’D’\) có \(AB = 4cm, AC = 5cm\) và \(A’C = 13cm.\) Tính thể tích và diện tích xung quanh của hình hộp chữ nhật đó.

Phương pháp giải - Xem chi tiết

Sử dụng:

- Định lí Pytago trong tam giác vuông: Bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

- Thể tích hình hộp chữ nhật là \(V = a.b.c\).

Trong đó: \(a, b, c\) là ba kích thước của hình hộp chữ nhật.

- Diện tích xung quanh của hình hộp chữ nhật bằng tổng diện tích các mặt bên hoặc bằng chu vi đáy nhân với chiều cao.

Lời giải chi tiết

 

Áp dụng định lí Pytago vào hai tam giác vuông \(AA'C\) và \(ABC\), ta có:

\(\begin{array}{l}
A'{C^2} = A'{A^2} + A{C^2}\\
\Rightarrow A'A = \sqrt {A'{C^2} - A{C^2}} \\
\Rightarrow A'A = \sqrt {{{13}^2} - {5^2}} = 12\,\left( {cm} \right)
\end{array}\)

\(\begin{array}{l}
A{C^2} = A{B^2} + B{C^2}\\
\Rightarrow BC = \sqrt {A{C^2} - A{B^2}} \\
\Rightarrow BC = \sqrt {{5^2} - {4^2}} = 3\,\left( {cm} \right)
\end{array}\)

Thể tích của hình hộp chữ nhật là:

\(V = AB.BC.A'A = 4.3.12 = 144\)\(\,\left( {c{m^3}} \right)\)

Diện tích xung quanh của hình hộp chữ nhật là:

\({S_{xq}} = 2.\left( {AB + BC} \right).A'A \)\(\,= 2.\left( {4 + 3} \right).12 = 168\,\left( {c{m^2}} \right)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved