1. Nội dung câu hỏi
Tính các giới hạn sau:
a) \(\lim \frac{{6n - 5}}{{3n}}\)
b) \(\lim \frac{{ - 2{n^2} - 6n + 2}}{{8{n^2} - 5n + 4}}\)
c) \(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}}\)
d) \(\lim \frac{{ - 4n + 1}}{{9{n^2} - n + 2}}\)
e) \(\lim \frac{{\sqrt {4{n^2} + n + 1} }}{{8n + 3}}\)
g) \(\lim \frac{{{4^n} + {5^n}}}{{{{3.4}^n} - {{4.5}^n}}}\)
2. Phương pháp giải
Sử dụng tính chất về dãy số có giới hạn vô cực và định lí về giới hạn hữu hạn
3. Lời giải chi tiết
a) Ta có: \(\lim \frac{{6n - 5}}{{3n}} = \lim \frac{{n\left( {6 - \frac{5}{n}} \right)}}{{3n}} = \lim \frac{{6 - \frac{5}{n}}}{3} = \frac{{\lim 6 - \lim \frac{5}{n}}}{{\lim 3}} = \frac{6}{3} = 2\)
b) Ta có:
\(\lim \frac{{ - 2{n^2} - 6n + 2}}{{8{n^2} - 5n + 4}} = \lim \frac{{{n^2}\left( { - 2 - \frac{6}{n} + \frac{2}{{{n^2}}}} \right)}}{{{n^2}\left( {8 - \frac{5}{n} + \frac{4}{{{n^2}}}} \right)}} = \lim \frac{{ - 2 - \frac{6}{n} + \frac{2}{{{n^2}}}}}{{8 - \frac{5}{n} + \frac{4}{{{n^2}}}}}\)
\( = \frac{{\lim \left( { - 2} \right) - \lim \frac{6}{n} + \lim \frac{2}{{{n^2}}}}}{{\lim 8 - \lim \frac{5}{n} + \lim \frac{4}{{{n^2}}}}} = \frac{{ - 2}}{8} = \frac{{ - 1}}{4}\)
c) Ta có:
\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}} = \lim \frac{{{n^3}\left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}}}\)
Vì \(\lim \left( {1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}} \right) = \lim 1 - \lim \frac{5}{{{n^2}}} + \lim \frac{1}{{{n^3}}} = 1 - 0 + 0 = 1\),
Và \(\lim \left( {\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}} \right) = \lim \frac{3}{n} - \lim \frac{4}{{{n^2}}} + \lim \frac{2}{{{n^3}}} = 0\), ta suy ra:
\(\lim \frac{{{n^3} - 5n + 1}}{{3{n^2} - 4n + 2}} = \lim \frac{{1 - \frac{5}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{\frac{3}{n} - \frac{4}{{{n^2}}} + \frac{2}{{{n^3}}}}} = + \infty \)
d) Ta có:
\(\begin{array}{l}\lim \frac{{ - 4n + 1}}{{9{n^2} - n + 2}} = \lim \frac{{{n^2}\left( {\frac{{ - 4}}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {9 - \frac{1}{n} + \frac{2}{{{n^2}}}} \right)}} = \lim \frac{{\frac{{ - 4}}{n} + \frac{1}{{{n^2}}}}}{{9 - \frac{1}{n} + \frac{2}{{{n^2}}}}} = \frac{{\lim \frac{{ - 4}}{n} + \lim \frac{1}{{{n^2}}}}}{{\lim 9 - \lim \frac{1}{n} + \lim \frac{2}{{{n^2}}}}}\\ = 0\end{array}\)
e) Ta có:
\(\lim \frac{{\sqrt {4{n^2} + n + 1} }}{{8n + 3}} = \lim \frac{{\sqrt {{n^2}\left( {4 + \frac{1}{n} + \frac{1}{{{n^2}}}} \right)} }}{{n\left( {8 + \frac{3}{n}} \right)}} = \lim \frac{{n\sqrt {4 + \frac{1}{n} + \frac{1}{{{n^2}}}} }}{{n\left( {8 + \frac{3}{n}} \right)}}\)
\( = \lim \frac{{\sqrt {4 + \frac{1}{n} + \frac{1}{{{n^2}}}} }}{{8 + \frac{3}{n}}} = \frac{{\sqrt {\lim 4 + \lim \frac{1}{n} + \lim \frac{1}{{{n^2}}}} }}{{\lim 8 + \lim \frac{3}{n}}} = \frac{{\sqrt 4 }}{8} = \frac{2}{8} = \frac{1}{4}\)
f) Ta có:
\(\lim \frac{{{4^n} + {5^n}}}{{{{3.4}^n} - {{4.5}^n}}} = \lim \frac{{\frac{{{4^n}}}{{{5^n}}} + 1}}{{3.\frac{{{4^n}}}{{{5^n}}} - 4}} = \frac{{\lim {{\left( {\frac{4}{5}} \right)}^n} + \lim 1}}{{\lim 3.\lim {{\left( {\frac{4}{5}} \right)}^n} - \lim 4}} = \frac{{0 + 1}}{{3.0 - 4}} = \frac{1}{4}\)
C
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Lịch sử lớp 11
Phần một: Giáo dục kinh tế
Nghị luận xã hội lớp 11
Đề thi học kì 1
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11