1. Nội dung câu hỏi
Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}{x^2} + ax + b\;khi\;\left| x \right| < 2\\x\left( {2 - x} \right)\;\;\;\;\,khi\;\left| x \right| \ge 2\end{array} \right.\). Tìm giá trị của các tham số a và b sao cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).
2. Phương pháp giải
Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để tìm a, b: Cho hàm \(\mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ + }} \left( {{x^2} + ax + b} \right) = 4 - 2a + b\)số\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)\(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).
3. Lời giải chi tiết
Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) \) \( = \mathop {\lim }\limits_{x \to {2^ + }} \left[ {x\left( {2 - x} \right)} \right] \) \( = 2\left( {2 - 2} \right) \) \( = 0 \) \( = f\left( 2 \right)\);
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \) \( = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} + ax + b} \right) \) \( = {2^2} + 2a + b \) \( = 2a + b + 4\)
\(\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) \) \( = \mathop {\lim }\limits_{x \to - {2^ - }} \left[ {x\left( {2 - x} \right)} \right] \) \( = \left( { - 2} \right)\left( {2 + 2} \right) \) \( = - 8 \) \( = f\left( { - 2} \right)\)
Hàm số \(y \) \( = f\left( x \right)\) liên tục trên \(\mathbb{R}\) khi hàm số \(y \) \( = f\left( x \right)\) liên tục tại \(x \) \( = 2\) và \(x \) \( = - 2\).
Do đó, \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right)\\\mathop {\lim }\limits_{x \to - {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {2^ + }} f\left( x \right) = f\left( { - 2} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}4 + 2a + b = 0\\4 - 2a + b = - 8\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}2a + b = - 4\\ - 2a + b = - 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 8\end{array} \right.\)
Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left[ {x\left( {2 - x} \right)} \right] = 2\left( {2 - 2} \right) = 0 = f\left( 2 \right)\);
\(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} + ax + b} \right) = {2^2} + 2a + b = 2a + b + 4\).
Chương IV. Sản xuất cơ khí
Unit 6. World heritages
Phần hai. Địa lí khu vực và quốc gia
Unit 1: Food for Life
Unit 1: Health & Healthy lifestyle
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11