Đề bài
Có ba hộp đựng thẻ. Hộp I chứa các tấm thẻ đánh số {1; 2; 3}. Hộp II chứa các tấm thẻ đánh số {2; 4; 6; 8}. Hộp III chứa các tấm thẻ đánh số {1; 3; 5; 7; 9; 11}. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ rồi cộng ba số trên ba tấm thẻ với nhau. Tính xác suất để kết quả là một số lẻ.
Phương pháp giải - Xem chi tiết
Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết
Ta có \(\Omega = \left\{ {\left( {a,b,c} \right)} \right\}\), trong đó \(a \in \left\{ {1;2;3} \right\},b \in \left\{ {2;4;6;8} \right\},c \in \left\{ {1;3;5;7;9;11} \right\}\). Suy ra \(n\left( \Omega \right) = 3.4.6 = 72\).
Gọi A là biến cố đang xét. Ta có \(A = \left\{ {\left( {a,b,c} \right),a + b + c = 2k + 1\left( {k \in \mathbb{Z}} \right)} \right\}\).
Vậy \(A = \left\{ {\left( {2,b,c} \right)} \right\}\) trong đó \(b \in \left\{ {2;4;6;8} \right\},c \in \left\{ {1;3;5;7;9;11} \right\}\). Suy ra \(n\left( A \right) = 1.4.6 = 24\).
Vậy \(P\left( A \right) = \frac{{24}}{{72}} = \frac{1}{3}\).
Chương 8. Địa lí dân cư
Chương 6. Sinh quyển
Unit 5: Inventions
Unit 8: Ecotourism
Một chuyện đùa nho nhỏ
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10