Đề bài
Trên một dãy phố có 3 quán ăn A, B, C. Hai bạn Văn và Hải mỗi người chọn ngẫu nhiên một quán để ăn trưa.
a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu.
b) Tính xác suất của các biến cố sau:
E: “Hai người cùng vào một quán".
F: “Cả hai không chọn quán C.
Phương pháp giải - Xem chi tiết
Sử dụng công thức xác suất cổ điển \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Lời giải chi tiết
a) Sơ đồ hình cây:
b) \(\Omega = \left\{ {{\rm{AA}},AB,AC,BA,BB,BC,CA,CB,CC} \right\}\).
Ta có \(E = \left\{ {{\rm{AA}},BB,CC} \right\}\). Vậy \(P\left( E \right) = \frac{3}{9} = \frac{1}{3}\).
\(F = \left\{ {{\rm{AA}},AB,BA,BB} \right\}\). Vậy \(P\left( F \right) = \frac{4}{9}\).
Chữ bầu lên nhà thơ
Chuyên đề 1: Hệ phương trình bậc nhất ba ẩn
Chương 2: Trái Đất
Chủ đề 8: Pháp luật nước Cộng hòa xã hội chủ nghĩa Việt Nam
Chủ đề 7. Cộng đồng các dân tộc Việt Nam
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10