Chương 9. Quan hệ giữa các yếu tố trong một tam giác

Bài 9.14 trang 55

Đề bài

Cho góc xAy và một điểm G trong góc đó. Lấy hai điểm M, N trên tia AG sao cho \(AM = \dfrac{3}{2}AG;AN = 2AM\). Qua N kẻ đường thẳng song song với đường thẳng chứa tia Ax, nó cắt Ay tại C. Đường thẳng CM cắt Ax tại B.

a)Chứng minh hai tam giác ABM và NCM bằng nhau, từ đó suy ra AM là đường trung tuyến của tam giác ABC.

b) Chứng minh rằng G là trọng tâm của tam giác ABC vừa dựng được. 

Phương pháp giải - Xem chi tiết

a)Chứng minh: \(\Delta ABM = \Delta NCM\left( {g - c - g} \right)\)

b)Chứng minh: \(AG = \dfrac{2}{3}AM\).

Lời giải chi tiết

 

a)

Xét \(\Delta ABM\)và \(\Delta NCM\) có:

\(\widehat {MAB} = \widehat {MNC}\)(2 góc so le trong NC // Ax)

\(\widehat {AMB} = \widehat {NMC}\)(2 góc đối đỉnh)

AN = 2AM =>AM = NM

\( \Rightarrow \Delta ABM = \Delta NCM\left( {g - c - g} \right)\)

\( \Rightarrow MB = MC\)(cạnh tương ứng)

\( \Rightarrow M\)là trung điểm của BC

Vậy AM là đường trung tuyến của tam giác ABC.

b)

Ta có: Điểm G nằm trên đường trung tuyến AM của tam giác ABC

\(AM = \dfrac{3}{2}AG \Rightarrow AG = \dfrac{2}{3}AM\)

Vậy G là trọng tâm tam giác ABC. 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved