Đề bài
Cho góc xAy và một điểm G trong góc đó. Lấy hai điểm M, N trên tia AG sao cho \(AM = \dfrac{3}{2}AG;AN = 2AM\). Qua N kẻ đường thẳng song song với đường thẳng chứa tia Ax, nó cắt Ay tại C. Đường thẳng CM cắt Ax tại B.
a)Chứng minh hai tam giác ABM và NCM bằng nhau, từ đó suy ra AM là đường trung tuyến của tam giác ABC.
b) Chứng minh rằng G là trọng tâm của tam giác ABC vừa dựng được.
Phương pháp giải - Xem chi tiết
a)Chứng minh: \(\Delta ABM = \Delta NCM\left( {g - c - g} \right)\)
b)Chứng minh: \(AG = \dfrac{2}{3}AM\).
Lời giải chi tiết
a)
Xét \(\Delta ABM\)và \(\Delta NCM\) có:
\(\widehat {MAB} = \widehat {MNC}\)(2 góc so le trong NC // Ax)
\(\widehat {AMB} = \widehat {NMC}\)(2 góc đối đỉnh)
AN = 2AM =>AM = NM
\( \Rightarrow \Delta ABM = \Delta NCM\left( {g - c - g} \right)\)
\( \Rightarrow MB = MC\)(cạnh tương ứng)
\( \Rightarrow M\)là trung điểm của BC
Vậy AM là đường trung tuyến của tam giác ABC.
b)
Ta có: Điểm G nằm trên đường trung tuyến AM của tam giác ABC
\(AM = \dfrac{3}{2}AG \Rightarrow AG = \dfrac{2}{3}AM\)
Vậy G là trọng tâm tam giác ABC.
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7