1. Nội dung câu hỏi
Cho hàm số \(f\left( x \right) = x{\left( {2x - 1} \right)^2}\). Tính \(f'\left( 0 \right)\) và \(f'\left( 1 \right)\).
2. Phương pháp giải
Để tính đạo hàm của hàm số \(y = f(x)\) tại điểm \({x_0} \in (a;b)\), ta thực hiện theo các bước sau:
1. Tính \(f(x) - f\left( {{x_0}} \right)\).
2. Lập và rút gọn tỉ số \(\frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) với \(x \in (a;b),x \ne {x_0}\).
3. Tìm giới hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
3. Lời giải chi tiết
\(f'(0) = \mathop {\lim }\limits_{x \to 0} \frac{{x{{(2x - 1)}^2}}}{x} = \mathop {\lim }\limits_{x \to 0} \left[ {{{(2x - 1)}^2}} \right] = {( - 1)^2} = 1\)
Để tính \(f'\left( 1 \right)\), ta phân tích:
\(\begin{array}{*{20}{r}}{f\left( x \right) - f\left( 1 \right)}&{\; = x{{(2x - 1)}^2} - 1 = \left( {x - 1} \right){{(2x - 1)}^2} + {{(2x - 1)}^2} - 1}\\{}&{}\end{array}\)
\( = \left( {x - 1} \right){(2x - 1)^2} + 4x\left( {x - 1} \right).\)
Khi đó, \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f(x) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left[ {{{\left( {2x - 1} \right)}^2} + 4x} \right] = 5\).
Chương I. Dao động
Bài 8. Lợi dụng địa hình, địa vật
CHƯƠNG II. CẢM ỨNG
Unit 8: Cities of the future
Chuyên đề 2: Một số vấn đề về pháp luật dân sự
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11