SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Trả lời câu hỏi 9.34 - Mục câu hỏi trắc nghiệm trang 64

1. Nội dung câu hỏi

Tiếp tuyến của đồ thị hàm số \(y = \frac{2}{3}{x^3} - 4{x^2} + 5x + 3\) với hệ số góc nhỏ nhất có phương trình là

A. \(y = 3x - 25\).                      

B. \(y =  - 3x + 25\).                    

C. \(y =  - 3x + \frac{{25}}{3}\).      

D. \(y = 3x - \frac{{25}}{3}\).


2. Phương pháp giải

Tính \(y'\).

Tìm giá trị nhỏ nhất của hệ số góc từ đó tìm tọa độ tiếp điểm.

Viết phương trình tiếp tuyến.

 

3. Lời giải chi tiết 

Hệ số góc tiếp tuyến của đồ thị hàm số có dạng \(k = y' = 2{x^2} - 8x + 5\).

Khi đó ta có: \(k = 2({x^2} - 4x + 4) = 2{(x - 2)^2} - 3 \ge  - 3\).

Dấu "=" đạt được, \({k_a} =  - 3\), khi \(x = 2\) và \(y = \frac{7}{3}\).

Phương trình tiếp tuyến cần tìm là: \(y - \frac{7}{3} =  - 3(x - 2) \Leftrightarrow y =  - 3x + \frac{{25}}{3}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved