SBT Toán 8 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 9.40 - Mục Bài tập trang 60

1. Nội dung câu hỏi

Tính chiều cao và diện tích của một tam giác đều có cạnh bằng 4cm.

 

2. Phương pháp giải 

+ Sử dụng kiến thức định lí Pythagore để tính độ dài đường cao: Trong một tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

+ Sử dụng tính chất tam giác đều: Trong tam giác đều, đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến.

+ Sử dụng công thức tính diện tích tam giác để tính diện tích tam giác: Diện tích tam giác bằng nửa tích chiều cao nhân với đáy (chiều cao là chiều cao ứng với đáy đó).

 

3. Lời giải chi tiết

Xét tam giác đều ABC có cạnh \(AB = AC = BC = 4cm\)

Kẻ đường cao AH của tam giác đều ABC.

Khi đó, đường cao AH đồng thời là đường trung tuyến. Do đó, \(AH = \frac{1}{2}BC = \frac{1}{2}.4 = 2\left( {cm} \right)\)

Áp dụng định lý Pythagore vào tam giác ABH vuông tại H có: \(A{H^2} + B{H^2} = A{B^2}\)

\(A{H^2} = A{B^2} - B{H^2} = {4^2} - {2^2} = 12\)

Do đó, \(AH = \sqrt {12}  = 2\sqrt 3 \left( {cm} \right)\)

Diện tích tam giác ABC là: \(\frac{1}{2}AH.BC = \frac{1}{2}.4.2\sqrt 3  = 4\sqrt 3 \left( {c{m^2}} \right)\)

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved