SBT Toán 11 - Kết nối tri thức với cuộc sống tập 2

Câu hỏi 9.46 - Mục Bài tập trang 66

1. Nội dung câu hỏi

Cho \(y = {x^3} - 3{x^2} + 2x - 1\) có đồ thị là đường cong \(\left( C \right)\). Tìm tọa độ điểm \(M\) thuộc đồ thị \(\left( C \right)\) sao cho tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) song song với đường thẳng có phương trình \(y = 2x - 1\).


2. Phương pháp giải

Tìm hệ số góc \(k\)của tiếp tuyến song song với đường thẳng \(y = 2x - 1\)

Áp dụng \(k = y' = 3{x^2} - 6x + 2\).

Từ đó, ta có nghiệm của phương trình là \(x\)

Thay \(x\) vào biểu thức hàm số ta được \(y =  - 1\).

Viết phương trình tiếp tuyến tại \(M\) kiểm tra xem có song song với đường thẳng \(y = 2x - 1\). Kết luận.

 

3. Lời giải chi tiết 

Tiếp tuyến song song với đường thẳng \(y = 2x - 1\) có hệ số góc \(k = 2\).

Mặt khác, hệ số góc của tiếp tuyến có dạng \(k = y' = 3{x^2} - 6x + 2\).

Từ đó, ta có: \(3{x^2} - 6x + 2 = 2 \Leftrightarrow 3{x^2} - 6x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0}\\{x = 2.}\end{array}} \right.\)

Thay \(x = 0,x = 2\) vào biểu thức hàm số ta được \(y =  - 1\).

Thử lại ta thấy điểm \(M\left( {0; - 1} \right)\) thuộc đường thẳng \(y = 2x - 1\) (tiếp tuyến trùng với đường thẳng đã cho) và điểm \(M\left( {2; - 1} \right)\) không thuộc đường thẳng đó.

Vậy \(M\left( {2; - 1} \right)\) là điểm cần tìm.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved