PHẦN HÌNH HỌC - SBT TOÁN 9 TẬP 1

Bài 95 trang 122 SBT toán 9 tập 1

Đề bài

Cho tam giác \(ABC\) có góc \(B\) bằng \(120^\circ, \) \(BC = 12cm, AB = 6cm\). Đường phân giác của góc \(B\) cắt cạnh \(AC\) tại \(D\).

a) Tính độ dài đường phân giác \(BD\).

b) Gọi \(M\) là trung điểm của \(BC\). Chứng minh \(AM \bot BD.\)

Phương pháp giải - Xem chi tiết

- Vận dụng định lí Ta-lét trong tam giác.

- Chứng minh tam giác \(ABM\) cân tại \(B\).

Lời giải chi tiết

 

a) Vì BD là tia phân giác của góc ABC nên: 

\(\widehat {ABD} = \widehat {CBD} = \displaystyle {{\widehat {ABC}} \over 2}\)\( = \displaystyle {{120^\circ } \over 2}\)\( = 60^\circ \)

Từ \(A\) kẻ đường thẳng song song với \(BD\) cắt \(CB\) tại \(E\).

Lại có:

\(\widehat {BAE} = \widehat {ABD} = 60^\circ \) (so le trong)

 \(\widehat {AEB} = \widehat {CBD} =  60^\circ \) (đồng vị)

Suy ra tam giác \(ABE\) đều (vì có 2 góc bằng \(60^0\))

\( \Rightarrow AB = BE = EA = 6\,(cm)\,\,(1)\)

Khi đó: \(CE = BC + BE = 12 + 6 = 18 (cm)\)

Tam giác \(ACE\) có \(AE // BD\) nên theo hệ quả định lý Ta-lét ta suy ra:

\(\displaystyle {{BC} \over {CE}} = {{BD} \over {AE}} \) 
\(\Rightarrow BD = \displaystyle {{BC.AE} \over {CE}} = {{12.6} \over {18}} = 4\,(cm) \)

b) Vì M là trung điểm cạnh BC nên ta có: 

\(MB = MC = \displaystyle {1 \over 2}.BC = {1 \over 2}.12\)\( = 6\,(cm)\,\,(2)\)

Từ (1) và (2) suy ra:

\(BM = AB \Rightarrow \) \(∆ABM\) cân tại \(B\).

Tam giác cân \(ABM\) có \(BD\) là đường phân giác nên đồng thời nó cũng là đường cao (tính chất tam giác cân). Vậy \(BD \bot AM\)

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved