Bài tập trắc nghiệm trang 137, 138, 139 SBT hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
3.77
3.78
3.79
3.80
3.81
3.82
3.83
3.84
3.85
3.86
3.87
3.88
3.89
3.90
3.91
3.92

Chọn đáp án đúng:

Lựa chọn câu hỏi để xem giải nhanh hơn
3.77
3.78
3.79
3.80
3.81
3.82
3.83
3.84
3.85
3.86
3.87
3.88
3.89
3.90
3.91
3.92

3.77

Phương trình chính tắc của đường thẳng đi qua hai điểm A(1; 2; -3) và B(3; -1; 1) là:

Lời giải chi tiết:

Ta có: \(\overrightarrow {AB}  = \left( {2; - 3;4} \right)\)

Đường thẳng AB đi qua điểm A(1; 2; -3) và có vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {2; - 3;4} \right)\) nên có phương trình chính tắc là: \(\dfrac{{x - 1}}{2} = \dfrac{{y - 2}}{{ - 3}} = \dfrac{{z + 3}}{4}\)

Chọn C.

3.78

Tọa độ giao điểm M của đường thẳng \(d:\dfrac{{x - 12}}{4} = \dfrac{{y - 9}}{3} = \dfrac{{z - 1}}{1}\) và mặt phẳng (α): 3x + 5y - z - 2 = 0 là:

A. (1; 0; 1)              B. (0; 0; -2)

C. (1; 1; 6)              D. (12; 9; 1)

Lời giải chi tiết:

Gọi M(12 + 4t; 9 + 3t; 1 + t) thuộc d và mặt phẳng (α),

Thay tọa độ M vào phương trình (α) ta được phương trình theo t:

3(12 + 4t) + 5(9 + 3t) - (1 + t) - 2 = 0

\( \Leftrightarrow 36 + 12t + 45 + 15t - 1 - t - 2 = 0\)

\( \Leftrightarrow 26t + 78 = 0 \Leftrightarrow t =  - 3\)

Vậy d cắt (α) tại M(0; 0; -2).

Chọn B.

3.79

Cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 2 - t\\z = 1 + 2t\end{array} \right.\) và mặt phẳng (α): x + 3y + z + 1 = 0

Khẳng định nào sau đây là đúng?

A. d // (α)              B. d cắt (α)

C. d ⊂ (α)              D. d ⊥ (α)

Lời giải chi tiết:

Đường thẳng d có vectơ chỉ phương là \(\overrightarrow u  = \left( {1; - 1;2} \right)\)

Mặt phẳng (α) có vectơ pháp tuyến \(\overrightarrow n  = \left( {1;3;1} \right)\)

Ta thấy: \(\overrightarrow u .\overrightarrow n  = 1.1 - 1.3 + 2.1 = 0\) nên \(\overrightarrow u  \bot \overrightarrow n \)

Mà điểm cố định M(1; 2; 1) của d không thuộc (α).

Vậy d // (α)

Chọn A.

3.80

Cho đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{{y - 1}}{2} = \dfrac{{z - 2}}{{ - 3}}\) và mặt phẳng (α): x + y + z - 4 = 0

Khẳng định nào sau đây là đúng?

A. d cắt (α)              B. d // (α)

C. d ⊂ (α)              D. d ⊥ (α)

Lời giải chi tiết:

Đường thẳng d có vectơ chỉ phương là \(\overrightarrow u  = \left( {1;2; - 3} \right)\)

Mặt phẳng (α) có vectơ pháp tuyến \(\overrightarrow n  = \left( {1;1;1} \right)\)

Ta thấy: \(\overrightarrow u .\overrightarrow n  = 1.1 + 2.1 - 3.1 = 0\) nên \(\overrightarrow u  \bot \overrightarrow n \)

Mà điểm cố định M(1; 1; 2) của d nằm trên (α). Vậy d (α)

Chọn C.

3.81

Hãy tìm kết luận đúng về vị trí tương đối giữa hai đường thẳng:

A. d cắt d'                     B. d ≡ d'

C. d chéo với d'              D. d // d'

Lời giải chi tiết:

Ta thấy:

\(d\) có VTCP \(\overrightarrow {{u_1}}  = \left( {1;1; - 1} \right)\) và đi qua \(M\left( {1;2;3} \right)\)

\(d'\) có VTCP \(\overrightarrow {{u_2}}  = \left( {2;2; - 2} \right)\).

Có \(\overrightarrow {{u_2}}  = 2\overrightarrow {{u_1}} \) và thay tọa độ của M vào \(d'\) ta được:

\(\left\{ \begin{array}{l}1 = 1 + 2t'\\2 =  - 1 + 2t'\\3 = 3 - 2t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t' = \dfrac{3}{2}\\t' = 0\end{array} \right.\left( {vo\,li} \right)\) nên \(M \notin d'\)

Hai đường thẳng d và d' có hai vectơ chỉ phương tỉ lệ và một điểm của đường này không nằm trên đường kia.

Suy ra d // d'.

Chọn D.

3.82

Giao điểm giữa hai đường thẳng:

A. (-3; -2; 6)              B. (5; -1; 20)

C. (3; 7; 18)              D. (3; -2; 1)

Lời giải chi tiết:

Giải hệ phương trình: \(\left\{ \begin{array}{l} - 3 + 2t = 5 + t'\\ - 2 + 3t =  - 1 - 4t'\\6 + 4t = 20 + t'\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2t - t' = 8\\3t + 4t' = 1\\4t - t' = 14\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}t = 3\\t' =  - 2\end{array} \right.\)

Vậy giao điểm của d và d' là M(3; 7; 18).

Chọn C.

3.83

Tìm m để hai đường thẳng sau đây cắt nhau:

A. m = 0              B. m = 1

C. m = -1              D. m = 2

Lời giải chi tiết:

\(d\) có VTCP \(\overrightarrow u  = \left( {m;1;2} \right)\) và đi qua M(1; 0; -1)

\(d'\) có VTCP \(\overrightarrow {u'}  = \left( { - 1;2; - 1} \right)\) và đi qua M'(1; 2; 3)

Ta có: \(\overrightarrow {MM'}  = \left( {0;2;4} \right)\), \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 2;m - 2;2m + 1} \right)\)

d và d' cắt nhau ⇔ \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'}  = 0\)

⇔ 2(m - 2) + 4(2m + 1) = 0

⇔ m = 0

Chọn A.

3.84

Khoảng cách từ điểm M(-2; -4; 3) đến mặt phẳng (α): 2x - y + 2z - 3 = 0 là:

A. 3              B. 2

C. 1              D. 11

Lời giải chi tiết:

Ta có:

\(d\left( {M,\left( \alpha  \right)} \right)\) \( = \dfrac{{\left| {2.\left( { - 2} \right) - \left( { - 4} \right) + 2.3 - 3} \right|}}{{\left| {{2^2} + {1^2} + {2^2}} \right|}}\) \( = \dfrac{3}{3} = 1\)

Chọn C.

3.85

Gọi H là hình chiếu vuông góc của điểm A(2; -1; -1) đến mặt phẳng (α): 16x - 12y - 15z - 4 = 0. Độ dài của đoạn AH là:

A. 55              B. 11/5

C. 11/25              D. 22/5

Lời giải chi tiết:

Ta có:

\(AH = d\left( {A,\left( \alpha  \right)} \right)\)\( = \dfrac{{\left| {16.2 - 12.\left( { - 1} \right) - 15.\left( { - 1} \right) - 4} \right|}}{{\sqrt {{{16}^2} + {{12}^2} + {{15}^2}} }}\) \( = \dfrac{{55}}{{25}} = \dfrac{{11}}{5}\)

Chọn B.

3.86

Cho mặt cầu tâm I(4; 2; -2) bán kính r tiếp xúc với mặt phẳng (P): 12x - 5z - 19 = 0. Bán kính r bằng:

A. 39              B. 3

C. 13              D. 39/√(13)

Lời giải chi tiết:

Mặt cầu tâm I bán kính r tiếp xúc với mặt phẳng (P) khi

\(R = d\left( {I,\left( P \right)} \right)\)\( = \dfrac{{\left| {12.4 - 5.\left( { - 2} \right) - 19} \right|}}{{\sqrt {{{12}^2} + {5^2}} }}\) \( = \dfrac{{39}}{{13}} = 3\)

Chọn B.

3.87

Cho hai mặt phẳng song song: (α): x + y - z + 5 = 0 và (β): 2x + 2y - 2z + 3 = 0

Khoảng cách giữa (α) và (β) là:

A. 2/(√3)              B. 2

C. 7/2              D. 7/(2√3)

Lời giải chi tiết:

Lấy điểm M(0; 0; 5) thuộc (α).

Do \(\left( \alpha  \right)//\left( \beta  \right)\) nên \(d\left( {\left( \alpha  \right),\left( \beta  \right)} \right) = d\left( {M,\left( \beta  \right)} \right)\) \( = \dfrac{{\left| {2.0 + 2.0 - 2.5 + 3} \right|}}{{\sqrt {{2^2} + {2^2} + {2^2}} }} = \dfrac{7}{{2\sqrt 3 }}\)

Chọn D.

3.88

Khoảng cách từ điểm M(2; 0; 1) đến đường thẳng \(d:\dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}\) là:

A. √(12)              B. √3

C. √2              D. 12/(√6)

Lời giải chi tiết:

Lấy điểm A(1; 0; 2) trên d và một vectơ chỉ phương của d là \(\overrightarrow u  = \left( {1;2;1} \right)\)

\(\overrightarrow {AM}  = \left( {1;0; - 1} \right)\) \( \Rightarrow \left[ {\overrightarrow {AM} ,\overrightarrow u } \right] = \left( {2; - 2;2} \right)\)

\(d\left( {M,d} \right) = \dfrac{{\left| {\left[ {\overrightarrow {AM} ,\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}}\) \( = \dfrac{{\sqrt {{2^2} + {2^2} + {2^2}} }}{{\sqrt {{1^2} + {2^2} + {1^2}} }} = \sqrt 2 \)

Chọn C.

3.89

Bán kính của mặt cầu tâm I(1; 3; 5) và tiếp xúc với đường thẳng \(\left\{ \begin{array}{l}x = t\\y =  - 1 - t\\z = 2 - t\end{array} \right.\) là:

A. √(14)              B. 14

C. √7              D. 7

Lời giải chi tiết:

Đường thẳng \(d\) đi qua điểm \(A\left( {0; - 1;2} \right)\) và VTCP \(\overrightarrow u  = \left( {1; - 1; - 1} \right)\).

\( \Rightarrow \overrightarrow {IA}  = \left( { - 1; - 4; - 3} \right)\) \( \Rightarrow \left[ {\overrightarrow {IA} ,\overrightarrow u } \right] = \left( {1; - 4;5} \right)\)

\( \Rightarrow R = d\left( {I,d} \right) = \dfrac{{\left| {\left[ {\overrightarrow {IA} ,\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}}\) \( = \dfrac{{\sqrt {1 + {4^2} + {5^2}} }}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \sqrt {14} \)

Chọn A.

3.90

Khoảng cách giữa hai đường thẳng:

A. √6              B. (√6)/2

C. 1/(√6)              D. √2

Lời giải chi tiết:

d đi qua điểm M(1; -1; 1) và có vectơ chỉ phương \(\overrightarrow u \)  = (2; -1; 0);

d' đi qua điểm M'(2; -2; 3) và có vectơ chỉ phương \(\overrightarrow {u'} \)  = (-1; 1; 1)

Ta có: \(\overrightarrow {MM'}  = \left( {1; - 1;2} \right)\), \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 1; - 2;1} \right)\)

\(d\left( {d,d'} \right) = \dfrac{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'} } \right|}}{{\left| {\left[ {\overrightarrow u ,\overrightarrow {u'} } \right]} \right|}}\) \( = \dfrac{{\left| { - 1.1 - 2.\left( { - 1} \right) + 1.2} \right|}}{{\sqrt {{1^2} + {2^2} + {1^2}} }}\) \( = \dfrac{3}{{\sqrt 6 }} = \dfrac{{\sqrt 6 }}{2}\) 

Ta được khoảng cách giữa hai đường thẳng d và d' bằng (√6)/2.

Chọn B.

3.91

Tọa độ hình chiếu vuông góc của điểm M(2; 0; 1) trên đường thẳng \(\Delta :\dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}\)

A. (1; 0; 2)              B. (2; 2; 3)

C. (0; -2; 1)              D. (-1; -4; 0)

Lời giải chi tiết:

Đường thẳng \(\Delta :\dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}\) có phương trình tham số là: \(\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 2 + t\end{array} \right.\).

Gọi H(1 + t; 2t; 2 + t) là một điểm trên Δ \( \Rightarrow \overrightarrow {MH}  = \left( { - 1 + t;2t;1 + t} \right)\)

\(\Delta \) có VTCP \(\overrightarrow {{u_\Delta }}  = \left( {1;2;1} \right)\)

H là hình chiếu vuông góc của M trên Δ \( \Leftrightarrow \overrightarrow {MH} .\overrightarrow {{u_\Delta }}  = 0\)

\(\begin{array}{l} \Leftrightarrow 1.\left( { - 1 + t} \right) + 2.2t + 1.\left( {1 + t} \right) = 0\\ \Leftrightarrow  - 1 + t + 4t + 1 + t = 0\\ \Leftrightarrow t = 0\end{array}\)

Suy ra H(1; 0; 2)

Chọn A.

3.92

Cho mặt phẳng (α): 3x - 2y - z + 5 = 0 và đường thẳng \(\Delta :\dfrac{{x - 1}}{2} = \dfrac{{y - 7}}{1} = \dfrac{{z - 3}}{4}\)

Gọi (β) là mặt phẳng chứa Δ và song song với (α). Khoảng cách giữa (α) và (β) là:

A. 9/14              B. 9/(√(14))

C. 3/14              D. 3/(√(14))

Lời giải chi tiết:

Lấy điểm \(M\left( {1;7;3} \right) \in \Delta  \subset \left( \beta  \right)\)

Do \(\left( \beta  \right)//\left( \alpha  \right)\) nên \(d\left( {\left( \beta  \right),\left( \alpha  \right)} \right) = d\left( {M,\left( \alpha  \right)} \right)\)

Ta có: \(d\left( {M,\left( \alpha  \right)} \right) = \dfrac{{\left| {3.1 - 2.7 - 3 + 5} \right|}}{{\sqrt {{3^2} + {2^2} + {1^2}} }}\) \( = \dfrac{9}{{\sqrt {14} }}\)

Chọn B.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved