Bài 62. Phân số
Bài 63. Phân số và phép chia số tự nhiên
Bài 64. Luyện tập
Bài 65. Phân số bằng nhau
Bài 66. Rút gọn phân số
Bài 67. Quy đồng mẫu số các phân số
Bài 68. Quy đồng mẫu số các phân số (tiếp theo)
Bài 69. Luyện tập
Bài 70. So sánh hai phân số cùng mẫu số
Bài 71. So sánh hai phân số khác mẫu số
Bài 72. Em ôn lại những gì đã học
Bài 73. Phép cộng phân số
Bài 74. Phép cộng phân số (tiếp theo)
Bài 75. Phép trừ phân số
Bài 76. Phép trừ phân số (tiếp theo)
Bài 77. Em ôn lại những gì đã học
Bài 78. Phép nhân phân số
Bài 79. Luyện tập
Bài 80. Tìm phân số của một số
Bài 81. Phép chia phân số
Bài 82. Luyện tập
Bài 83. Em ôn lại những gì đã học
Bài 84. Em ôn lại những gì đã học
Bài 85. Em đã học được những gì
Bài 86. Hình thoi
Bài 87. Diện tích hình thoi
Bài 88. Em ôn lại những gì đã học
Bài 89. Giới thiệu về tỉ số
Bài 90. Tìm hai số biết tổng và tỉ số của hai số đó
Bài 91. Em ôn lại những gì đã học
Bài 92. Em ôn lại những gì đã học
Bài 93. Tìm hai số biết hiệu và tỉ số của hai số đó
Bài 94. Em ôn lại những gì đã học
Bài 95. Em ôn lại những gì đã học
Bài 96. Tỉ lệ bản đồ
Bài 97. Ứng dụng của tỉ lệ bản đồ
Bài 98. Thực hành
Bài 99. Ôn tập về số tự nhiên
Bài 100. Ôn tập về các phép tính với số tự nhiên
Bài 101. Ôn tập về biểu đồ
Bài 102. Ôn tập về phân số
Bài 103. Ôn tập về các phép tính với phân số
Bài 104. Ôn tập về các phép tính với phân số (tiếp theo)
Bài 105. Ôn tập về đại lượng
Bài 106. Ôn tập về đại lượng (tiếp theo)
Bài 107. Ôn tập về hình học
Bài 108. Ôn tập về tìm số trung bình cộng
Bài 109. Ôn tập về tìm hai số biết tổng và hiệu của hai số đó
Bài 110. Ôn tập về tìm hai số biết tổng (hiệu) và tỉ số của hai số đó
Bài 111. Em ôn lại những gì đã học
Bài 112. Em đã học được những gì ?
Câu 1
Giải thích các cách làm dưới đây của bạn Lan và bạn Linh.
• Tổng của hai số là 30, tỉ số của chúng là \(\dfrac{2}{3}\). Tìm mỗi số.
Lan làm như sau :
30 : (2 + 3) = 6
6 × 2 = 12
30 – 12 = 18
Vậy số thứ nhất là 12, số thứ hai là 18.
• Hiệu của hai số là 20, tỉ số chúng là \(\dfrac{3}{7}\). Tìm mỗi số.
Linh làm như sau :
20 : (7 – 3) = 5
5 × 3 = 15
15 + 20 = 35
Vậy số bé là 15, số lớn là 35.
Phương pháp giải:
Xem lại cách giải bài toán tìm hai số khi biết tổng (hoặc hiệu) và tỉ số của hai số đó.
Lời giải chi tiết:
• Cách làm của bạn Lan :
- Bước 1 : Tìm giá trị 1 phần bằng cách lấy tổng chia cho tổng số phần bằng nhau.
(Tỉ số của hai số là \(\dfrac{2}{3}\) nên coi số thứ nhất gồm 2 phần bằng nhau thì số thứ hai gồm 3 phần như thế).
- Bước 2 : Tìm số thứ nhất ta lấy giá trị 1 phần nhân với số phần của số thứ nhất.
- Bước 3 : Tìm số thứ hai ta lấy tổng hai số trừ đi số thứ nhất.
• Cách làm của bạn Linh :
- Bước 1 : Tìm giá trị 1 phần bằng cách lấy hiệu chia cho hiệu số phần bằng nhau.
(Tỉ số của hai số là \(\dfrac{3}{7}\) nên coi số bé gồm 3 phần bằng nhau thì số lớn gồm 7 phần như thế).
- Bước 2 : Tìm số bé ta lấy giá trị 1 phần nhân với số phần của số bé.
- Bước 3 : Tìm số lớn ta lấy số bé cộng với hiệu của hai số.
Câu 2
Tính:
\(a)\,\,\dfrac{5}{3} + \dfrac{4}{7}\) \(b)\,\,\dfrac{2}{3} - \dfrac{3}{9}\) \(c)\,\,\dfrac{2}{5} \times \dfrac{8}{{11}}\)
\(d)\,\,\dfrac{3}{7}:\dfrac{5}{{14}}\) \(e)\,\,\dfrac{3}{8} + \dfrac{6}{{15}}:\dfrac{3}{5}\)
Phương pháp giải:
Áp dụng các quy tắc :
- Muốn cộng (hoặc trừ) hai phân số khác mẫu số, ta quy đồng mẫu số hai phân số, rồi cộng (hoặc trừ) hai phân số đó.
- Muốn nhân hai phân số ta lấy tử số nhân với tử số, mẫu số nhân với mẫu số.
- Muốn chia hai phân số ta lấy phân số thứ nhất nhân với phân số thứ hai đảo ngược
Lời giải chi tiết:
\(a)\,\,\dfrac{5}{3} + \dfrac{4}{7} = \dfrac{{35}}{{21}} + \dfrac{{12}}{{21}} = \dfrac{{47}}{{21}}\,\,;\)
\(b)\,\,\dfrac{2}{3} - \dfrac{3}{9} = \dfrac{6}{9} - \dfrac{3}{9} = \dfrac{3}{9} = \dfrac{1}{3}\,\,;\)
\(c)\,\,\dfrac{2}{5} \times \dfrac{8}{{11}} = \dfrac{{2 \times 8}}{{5 \times 11}} = \dfrac{{16}}{{55}}\,\,;\)
\(d)\,\,\dfrac{3}{7}:\dfrac{5}{{14}} = \dfrac{3}{7} \times \dfrac{{14}}{5} = \dfrac{{3 \times 14}}{{7 \times 5}}\)\( = \dfrac{{3 \times 2 \times 7}}{{7 \times 5}} = \dfrac{6}{5}\,\,;\)
\(e)\,\,\dfrac{3}{8} + \dfrac{6}{{15}}:\dfrac{3}{5} = \dfrac{3}{8} + \dfrac{6}{{15}} \times \dfrac{5}{3} \)\(= \dfrac{3}{8} + \dfrac{{30}}{{45}} = \dfrac{3}{8} + \dfrac{2}{3} = \dfrac{9}{{24}} + \dfrac{{16}}{{24}} \)\(= \dfrac{{25}}{{24}}.\)
Câu 3
Tính diện tích hình bình hành, biết :
a) Độ dài đáy là 25m và chiều cao bằng \(\dfrac{3}{5}\) độ dài đáy.
b) Chiều cao là 24cm và độ dài đáy bằng \(\dfrac{8}{3}\) chiều cao.
Phương pháp giải:
a) - Tính chiều cao ta lấy độ dài đáy nhân với \(\dfrac{3}{5}\).
- Tính diện tích hình bình hành ta lấy độ dài đáy nhân với chiều cao (cùng một đơn vị đo).
b) - Tính độ dài đáy ta lấy chiều cao nhân với \(\dfrac{8}{3}\).
- Tính diện tích hình bình hành ta lấy độ dài đáy nhân với chiều cao (cùng một đơn vị đo).
Lời giải chi tiết:
a) Chiều cao của hình bình hành là :
25 × \(\dfrac{3}{5}\) = 15 (m)
Diện tích hình bình hành là :
25 × 15 = 375 (m2)
Đáp số: 250 m2.
b) Độ dài đáy hình bình hành là :
24 × \(\dfrac{8}{3}\) = 64 (cm)
Diện tích hình bình hành là :
64 × 24 = 1536 (cm2)
Đáp số: 1536cm2.
Câu 4
Viết số thích hợp vào ô trống:
a)
b)
Phương pháp giải:
Tính ra nháp theo các bước bên dưới, sau đó ghi kết quả vào bảng :
1. Vẽ sơ đồ dựa vào tỉ số của hai số.
2. Tìm tổng (hoặc hiệu) số phần bằng nhau.
3. Tìm giá trị của 1 phần bằng cách lấy tổng hai số chia cho tổng số phần bằng nhau (hoặc lấy hiệu chia cho hiệu số phần bằng nhau).
4. Tìm số bé.
5. Tìm số lớn.
Chú ý: Bước 3 và bước 4 có thể gộp lại thành một bước; có thể tìm số lớn trước rồi tìm số bé sau.
Lời giải chi tiết:
Câu 5
Một cửa hàng có 36 chiếc xe đạp và xe máy, trong đó số xe đạp gấp 5 lần số xe máy. Hỏi cửa hàng có bao nhiêu xe đạp, bao nhiêu xe máy ?
Phương pháp giải:
1. Vẽ sơ đồ: coi số xe máy (đóng vai trò số bé) gồm 1 phần thì số xe máy (đóng vai trò số lớn) gồm 5 phần như thế.
2. Tìm tổng số phần bằng nhau.
3. Tìm giá trị của 1 phần bằng cách lấy tổng hai số chia cho tổng số phần bằng nhau.
4. Tìm số bé (lấy giá trị một phần nhân với số phần của số bé) hoặc tìm số lớn trước.
5. Tìm số lớn (lấy tổng hai số trừ đi số bé) hoặc tìm số bé (lấy tổng hai số trừ đi số lớn).
Chú ý: Bước 3 và bước 4 có thể gộp lại thành một bước.
Lời giải chi tiết:
Ta có sơ đồ:
Theo sơ đổ, tổng số phần bằng nhau là :
5 + 1 = 6 (phần)
Giá trị một phần là :
36 : 6 = 6 (chiếc)
Cửa hàng có số chiếc xe đạp là :
6 × 5 = 30 (chiếc)
Cửa hàng có số chiếc xe máy là :
36 – 30 = 6 (chiếc)
Đáp số : Xe đạp : 30 chiếc ;
Xe máy : 6 chiếc.
Câu 6
Mẹ hơn con 24 tuổi. Tuổi mẹ gấp 3 lần tuổi con. Hỏi mẹ bao nhiêu tuổi, con bao nhiêu tuổi ?
Phương pháp giải:
1. Vẽ sơ đồ: Coi tuổi con (vai trò là số bé) gồm 1 phần bằng nhau thì tuổi mẹ (vai trò là số lớn) gồm 3 phần như thế.
2. Tìm hiệu số phần bằng nhau.
3. Tìm giá trị của một phần bằng cách lấy hiệu hai số chia cho hiệu số phần bằng nhau.
4. Tìm số bé (lấy giá trị một phần nhân với số phần của số bé) hoặc tìm số lớn trước.
5. Tìm số lớn (lấy số bé cộng với hiệu của hai số ...) hoặc tìm số bé (lấy số lớn trừ đi hiệu).
Chú ý: Bước 3 và bước 4 có thể gộp thành một bước.
Lời giải chi tiết:
Ta có sơ đồ :
Theo sơ đồ, hiệu số phần bằng nhau là :
3 – 1 = 2 (phần)
Giá trị mỗi phần là :
24 : 2 = 12 (tuổi)
Tuổi của con là :
12 × 1 = 12 (tuổi)
Tuổi của mẹ là :
12 + 24 = 36 (tuổi)
Đáp số : Con : 12 tuổi ;
Mẹ : 36 tuổi.
Câu 7
Có 12 can nước mắm và 14 can dấm chứa tất cả 468 lít. Biết rằng mỗi can chứa một lượng như nhau. Hỏi có bao nhiêu lít nước mắm, bao nhiêu lít dấm ?
Phương pháp giải:
- Tìm tổng số can nước mắm và can dấm.
- Tìm số lít có trong 1 can.
- Tìm số lít nước mắm ta lấy số lít có trong 1 can nhân với số can nước nắm.
- Tìm số lít dấm ta lấy tổng số lít có trong 1 can nhân với số can dấm.
Lời giải chi tiết:
Có tất cả số can nước mắm và dấm là :
12 + 14 = 26 (can)
Mỗi can đựng được số lít là :
468 : 26 = 18 (lít)
Có tất cả số lít nước mắm là :
18 × 12 = 216 (lít)
Có tất cả số lít dấm là :
18 × 14 = 252 (lít)
Đáp số : Nước mắm : 216 lít ;
Dấm : 256 lít.
Chủ đề 1. Biết ơn người lao động
Bài tập cuối tuần 34
Bài 5: Tiết kiệm thời giờ
Chủ đề 6. Sinh vật và môi trường
Chủ đề 4 : Thiết kế bài trình chiếu với phần mềm PowerPoint
SGK Toán Lớp 4
SGK Toán 4 - Kết nối tri thức với cuộc sống
STK - Cùng em phát triển năng lực Toán 4
Bài giảng ôn luyện kiến thức môn Toán lớp 4
SGK Toán 4 - Chân trời sáng tạo
SGK Toán 4 - Cánh Diều
VBT Toán 4 - Chân trời sáng tạo
VBT Toán 4 - Kết nối tri thức với cuộc sống
VBT Toán 4 - Cánh Diều
Vở bài tập Toán Lớp 4
Bài tập cuối tuần Toán Lớp 4
Cùng em học toán Lớp 4
Ôn tập hè Toán Lớp 4
Đề thi, đề kiểm tra Toán Lớp 4
Bài tập phát triển năng lực Toán Lớp 4