Luyện tập chung trang 68
Luyện tập chung trang 85
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 12. Tổng các góc trong một tam giác
Bài tập cuối chương IV
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 74
HĐ1
Nhắc lại quy tắc cộng và trừ hai phân số rồi thực hiện phép tính:
\(a)\frac{{ - 7}}{8} + \frac{5}{{12}};b)\frac{{ - 5}}{7} - \frac{8}{{21}}\)
Phương pháp giải:
Quy tắc cộng, trừ phân số
Áp dụng quy tắc để tính
Lời giải chi tiết:
+) Quy tắc cộng 2 phân số:
Quy tắc cộng hai phân số cùng mẫu
Muốn cộng hai phân số có cùng mẫu số, ta cộng tử số với nhau và giữ nguyên mẫu số.
Quy tắc cộng hai phân số khác mẫu
Muốn cộng hai phân số khác mẫu, ta quy đồng mẫu số của chúng, sau đó cộng hai phân số có cùng mẫu.
+) Quy tắc trừ 2 phân số:
* Quy tắc cộng hai phân số cùng mẫu
Muốn trừ 2 phân số có cùng mẫu số, ta trừ tử của số bị trừ cho tử của số trừ và giữ nguyên mẫu.
* Quy tắc cộng hai phân số khác mẫu
Muốn trừ 2 phân số khác mẫu, ta quy đồng mẫu 2 phân số rồi trừ 2 phân số đó
\(\begin{array}{l}a)\frac{{ - 7}}{8} + \frac{5}{{12}}\\ = \frac{{ - 21}}{{24}} + \frac{{10}}{{24}}\\ = \frac{{ - 11}}{{24}}\\b)\frac{{ - 5}}{7} - \frac{8}{{21}}\\ = \frac{{ - 15}}{{21}} - \frac{8}{{21}}\\ = \frac{{ - 23}}{{21}}\end{array}\)
Chú ý:
Ta thường chọn mẫu số chung của các phân số là BCNN của các mẫu số của chúng.
HĐ2
Viết các hỗn số và số thập phân trong phép tính sau dưới dạng phân số rồi thực hiện phép tính:
\(a)0,25 + 1\frac{5}{{12}};b) - 1,4 - \frac{3}{5}\)
Phương pháp giải:
Viết các hỗn số và số thập phân dưới dạng phân số
Muốn cộng hai phân số khác mẫu, ta quy đồng mẫu số của chúng, sau đó cộng hai phân số có cùng mẫu
Muốn trừ 2 phân số khác mẫu, ta quy đồng mẫu 2 phân số rồi trừ 2 phân số đó
Lời giải chi tiết:
\(\begin{array}{l}a)0,25 + 1\frac{5}{{12}} = \frac{{25}}{{100}} + \frac{{17}}{{12}}\\ = \frac{1}{4} + \frac{{17}}{{12}} = \frac{3}{{12}} + \frac{{17}}{{12}}\\ = \frac{{20}}{{12}} = \frac{5}{3}\\b) - 1,4 - \frac{3}{5}\\ = \frac{{ - 14}}{{10}} - \frac{3}{5} = \frac{{ - 7}}{5} - \frac{3}{5}\\ = \frac{{ - 10}}{5} = - 2\end{array}\)
Luyện tập 1
Tính:
\(a)( - 7) - ( - \frac{5}{8});b) - 21,25 + 13,3.\)
Phương pháp giải:
Áp dụng: a – (-b) = a + b
Cộng 2 số hữu tỉ trái dấu
Lời giải chi tiết:
\(\begin{array}{l}a)( - 7) - ( - \frac{5}{8})\\ = ( - 7) + \frac{5}{8}\\ = \frac{{ - 56}}{8} + \frac{5}{8}\\ = \frac{{ - 51}}{8}\\b) - 21,25 + 13,3\\ = - (21,25 - 13,3)\\ = - 7,95\end{array}\)
Luyện tập 2
Bỏ dấu ngoặc rồi tính tổng sau:
\(\begin{array}{l}a)\frac{9}{{10}} - (\frac{6}{5} - \frac{7}{4})\\b)6,5 + [0,75 - (8,25 - 1,75)]\end{array}\)
Phương pháp giải:
Khi bỏ dấu ngoặc:
+) Nếu trước dấu ngoặc là dấu (+) thì ta bỏ dấu ngoặc và giữ nguyên dấu của các số hạng trong ngoặc.
+) Nếu trước dấu ngoặc là dấu (-) thì ta bỏ dấu ngoặc và đổi dấu của các số hạng trong ngoặc.
Lời giải chi tiết:
\(\begin{array}{l}a)\frac{9}{{10}} - (\frac{6}{5} - \frac{7}{4})\\ = \frac{9}{{10}} - \frac{6}{5} + \frac{7}{4}\\ = \frac{{18}}{{20}} - \frac{{24}}{{20}} + \frac{{35}}{{20}}\\ = \frac{{18 - 24 + 35}}{{20}}\\ = \frac{{29}}{{20}}\\b)6,5 + [0,75 - (8,25 - 1,75)]\\ = 6,5 + (0,75 - 8,25 + 1,75)\\ = 6,5 + 0,75 - 8,25 + 1,75\\ = 7,25 - 8,25 + 1,75\\ = ( - 1) + 1,75\\ = 0,75\end{array}\)
Vận dụng 1
Khoai tây là thức ăn chính của người châu Âu và là một món ăn ưa thích của người Việt Nam. Trong 100 g khoai tây khô có 11 g nước; 6,6 g protein; 0,3 g chất béo; 75,1 g glucid và các chất khác.
(Theo Viện Dinh dưỡng Quốc gia)
Em hãy cho biết khối lượng các chất còn lại trong 100 g khoai tây khô.
Phương pháp giải:
Thực hiện phép trừ số hữu tỉ
Tổng khối lượng các chất trong 100 g khoai tây khô là 100 g.
Lời giải chi tiết:
Khối lượng các chất còn lại trong 100 g khoai tây khô là:
100 – 11 – 6,6 – 0,3 – 75,1 = 7 (g)
Chương VIII. Cảm ứng ở sinh vật
Chương 4: Góc. Đường thẳng song song
Bài 2. Bài học cuộc sống
Presentation Skills
Đề thi học kì 1
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7