Khám phá 1
1. Nội dung câu hỏi
Cho điểm O. Gọi f là quy tắc xác định như sau:
a) Với điểm M khác O, xác định điểm M’ sao cho O là trung điểm của MM’ (Hình 1).
b) Với điểm M trùng với O thì f biến điểm M thành chính nó.
Hỏi f có phải là phép biến hình không?
2. Phương pháp giải
Phép biến hình f trong mặt phẳng là một quy tắc cho tương ứng với mỗi điểm M với duy nhất một điểm M’. Điểm M’ được gọi là ảnh của điểm M qua phép biến hình f, kí hiệu \(M' = f(M)\).
3. Lời giải chi tiết
Theo đề, ta có M’ = f(M).
Ta thấy f là một quy tắc sao cho ứng với mỗi điểm M đều xác định duy nhất một điểm M’.
Vậy f là một phép biến hình.
Thực hành 1
1. Nội dung câu hỏi
Trong mặt phẳng tọa độ Oxy, cho các điểm I(1; 1), M(2; 2), N(0; –3) và P(–1; –2). Tìm tọa độ các điểm \(M'{\rm{ }} = {\rm{ }}{Đ_I}\left( M \right),{\rm{ }}N'{\rm{ }} = {\rm{ }}{Đ_I}\left( N \right),{\rm{ }}P'{\rm{ }} = {\rm{ }}{Đ_I}\left( P \right).\)
2. Phương pháp giải
Nếu thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)
3. Lời giải chi tiết:
+ Ta có \(M'{\rm{ }} = {\rm{ }}{Đ_I}\left( M \right).\)
Suy ra I(1; 1) là trung điểm MM’ với M(2; 2).
Do đó \(\left\{ \begin{array}{l}{x_{M'}} = 2{x_I} - {x_M} = 2.1 - 2 = 0\\{y_{M'}} = 2{y_I} - {y_M} = 2.1 - 2 = 0\end{array} \right.\)
Suy ra M’ có tọa độ là (0; 0).
+ Ta có \(N'{\rm{ }} = {\rm{ }}{Đ_I}\left( N \right).\)
Suy ra I(1; 1) là trung điểm của NN’ với N(0; –3).
Do đó \(\left\{ \begin{array}{l}{x_{N'}} = 2{x_I} - {x_N} = 2.1 - 0 = 2\\{y_{N'}} = 2{y_I} - {y_N} = 2.1 + 3 = 5\end{array} \right.\)
Suy ra N’ có tọa độ là N’(2; 5).
+ Ta có \(P' = {\rm{ }}{Đ_I}\left( P \right).\)
Suy ra I(1; 1) là trung điểm PP’ với P(–1; –2).
Do đó \(\left\{ \begin{array}{l}{x_{P'}} = 2{x_I} - {x_P} = 2.1 + 1 = 3\\{y_{P'}} = 2{y_I} - {y_P} = 2.1 + 2 = 4\end{array} \right.\)
Suy ra P’ có tọa độ là P’(3; 4).
Vậy \(M'\left( {0;{\rm{ }}0} \right),{\rm{ }}N'\left( {2;{\rm{ }}5} \right),{\rm{ }}P'\left( {3;{\rm{ }}4} \right).\)
Vận dụng 1
1. Nội dung câu hỏi
Tìm phép đối xứng tâm biến mỗi hình sau thành chính nó.
2. Phương pháp giải
Cho điểm O, phép biến hình biến điểm O thành chính nó và biến mỗi điểm \(M \ne O\) thành điểm M’ sao cho O là trung điểm của MM’ được gọi là phép đối xứn tâm O, kí hiệu . Điểm O được gọi là tâm đối xứng.
3. Lời giải chi tiết
⦁ Ta xét hình màu đỏ:
Giả sử ta chọn điểm O trên hình màu đỏ như hình vẽ.
Lấy điểm B trùng O. Khi đó qua O, điểm đối xứng với B là chính nó.
Lấy điểm A bất kì trên hình màu đỏ sao cho A ≠ O.
Khi đó ta luôn xác định được một điểm A’ sao cho O là trung điểm của đoạn AA’.
Tương tự như vậy, với mỗi điểm M bất kì khác O trên hình màu đỏ, ta đều xác định được một điểm M’ trên hình sao cho O là trung điểm của đoạn MM’.
Vậy phép đối xứng tâm O biến hình màu đỏ thành chính nó.
⦁ Ta xét hình màu xanh lá:
Giả sử ta chọn điểm I trên hình màu xanh lá như hình vẽ.
Lấy điểm F trùng I. Khi đó qua I, điểm đối xứng với F là chính nó.
Lấy điểm E bất kì trên hình màu xanh lá sao cho E ≠ I.
Khi đó ta luôn xác định được một điểm E’ sao cho I là trung điểm của đoạn EE’.
Tương tự như vậy, với mỗi điểm M bất kì khác I trên hình màu xanh lá, ta đều xác định được một điểm M’ trên hình sao cho I là trung điểm của đoạn MM’.
Vậy phép đối xứng tâm I biến hình màu xanh lá thành chính nó.
⦁ Ta xét hình màu xanh biển:
Giả sử ta chọn điểm H trên hình màu xanh biển như hình vẽ.
Lấy điểm P trùng H. Khi đó qua H, điểm đối xứng với P là chính nó.
Lấy điểm P bất kì trên hình màu xanh biển sao cho P ≠ H.
Khi đó ta luôn xác định được một điểm P’ sao cho H là trung điểm của đoạn PP’.
Tương tự như vậy, với mỗi điểm M bất kì khác H trên hình màu xanh biển, ta đều xác định được một điểm M’ trên hình sao cho H là trung điểm của đoạn MM’.
Vậy phép đối xứng tâm H biến hình màu xanh biển thành chính nó.
Test Yourself 3
Chủ đề 2. Sóng
Unit 1: Health & Healthy lifestyle
Đề thi học kì 1
Bài 7: Tiết 3. Thực hành: Tìm hiểu về Liên minh châu Âu - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11