Mục 2 trang 21, 22 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lựa chọn câu hỏi để xem giải nhanh hơn
Khám phá 2
Thực hành 2
Vận dụng 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Khám phá 2
Thực hành 2
Vận dụng 2

Khám phá 2

1. Nội dung câu hỏi

Giả sử ĐO là phép đối xứng tâm O. Lấy hai điểm tùy ý A, B sao cho ba điểm O, A, B không thẳng hàng. Gọi A’, B’ lần lượt là ảnh của A, B qua ĐO. So sánh tam giác OAB và tam giác O’A’B’ rồi so sánh A’B’ và AB.

 

2. Phương pháp giải

Vẽ hình sau đó quan sát và so sánh

 

3. Lời giải chi tiết

Theo đề, ta có \({Đ_O}\left( A \right){\rm{ }} = {\rm{ }}A'.\)

Suy ra O là trung điểm AA’, do đó \(OA{\rm{ }} = {\rm{ }}OA'.\)

Chứng minh tương tự, ta được \(OB{\rm{ }} = {\rm{ }}OB'.\)

Xét \(\Delta OAB\) và \(\Delta OA'B'\), có:

\(OA{\rm{ }} = {\rm{ }}OA'\)  (chứng minh trên);

\(\widehat {AOB} = \widehat {A'OB'}\) (đối đỉnh);

\(OB{\rm{ }} = {\rm{ }}OB'\) (chứng minh trên).

Do đó \(\Delta OAB{\rm{ }} = {\rm{ }}\Delta OA'B'{\rm{ }}\left( {c.g.c} \right).\)

Suy ra \(A'B'{\rm{ }} = {\rm{ }}AB\) (cặp cạnh tương ứng).

Vậy \(\Delta OAB{\rm{ }} = {\rm{ }}\Delta OA'B'{\rm{ }}\) và \(A'B'{\rm{ }} = {\rm{ }}AB.\)

Thực hành 2

1. Nội dung câu hỏi

Trong mặt phẳng tọa độ Oxy, tìm ảnh qua ĐO của

a) điểm M(3; –4);

b) đường thẳng d: x – 3y + 6 = 0;

c) đường tròn (C): (x + 2)2 + (y – 1)2 = 4.

 

2. Phương pháp giải:

Nếu \(M'{\rm{ }} = {\rm{ }}{Đ_I}\left( M \right)\) thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)

 

3. Lời giải chi tiết:

a) Gọi M’ là ảnh của M qua ĐO.

Suy ra O là trung điểm của MM’ với \(M\left( {3;{\rm{ }}-4} \right).\)

Do đó \(\left\{ \begin{array}{l}{x_{M'}} = 2{x_O} - {x_M} = 2.0 - 3 =  - 3\\{y_{M'}} = 2{y_O} - {y_M} = 2.0 + 4 = 4\end{array} \right.\)

Vậy \(M'\left( {-3;{\rm{ }}4} \right).\)

b) • Chọn \(A\left( {0;{\rm{ }}2} \right) \in d:{\rm{ }}x{\rm{ }}-{\rm{ }}3y{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0.\)

Gọi A’là ảnh của A qua \({Đ_O}.\)

Suy ra O là trung điểm của AA’ với A(0; 2)

Do đó \(\left\{ \begin{array}{l}{x_{A'}} = 2{x_O} - {x_A} = 2.0 - 0 = 0\\{y_{A'}} = 2{y_O} - {y_A} = 2.0 - 2 =  - 2\end{array} \right.\)

Vì vậy A’(0; –2).

• Đường thẳng \(d:{\rm{ }}x{\rm{ }}-{\rm{ }}3y{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}0\) có vectơ pháp tuyến \({\rm{\vec n}} = \left( {1; - 3} \right)\)

Gọi d’ là ảnh của d qua \({Đ_O}.\)

Suy ra d’ song song hoặc trùng với d, nên d’ nhận vectơ pháp tuyến của d là \({\rm{\vec n}} = \left( {1; - 3} \right)\) làm vectơ pháp tuyến.

Vậy đường thẳng d’ đi qua A’(0; –2) và nhận làm vectơ \({\rm{\vec n}} = \left( {1; - 3} \right)\) pháp tuyến nên có phương trình là:

\(1\left( {x{\rm{ }}-{\rm{ }}0} \right){\rm{ }}-{\rm{ }}3\left( {y{\rm{ }} + {\rm{ }}2} \right){\rm{ }} = {\rm{ }}0 \Leftrightarrow x-3y-6 = 0.\)

c) Đường tròn \(\left( C \right):{\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}1} \right)^2}\; = {\rm{ }}4\) có tâm I(–2; 1), bán kính R = 2.

Gọi (C’) là ảnh của (C) qua ĐO nên (C’) có tâm là ảnh của I(–2; 1) và có bán kính R’ = R = 2.

Gọi I’= ĐO(I).

Suy ra O là trung điểm \(II'.\)

Do đó \(\left\{ \begin{array}{l}{x_{I'}} = 2{x_O} - {x_I} = 2.0 + 2 = 2\\{y_{I'}} = 2{y_O} - {y_I} = 2.0 - 1 =  - 1\end{array} \right.\)

Vì vậy tọa độ I’(2; –1).

Vậy đường tròn (C’) là ảnh của (C) qua ĐO, có tâm I’(2; –1) và R’ = 2 nên có phương trình là:

\({\left( {x{\rm{ }}-{\rm{ }}2} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }} + {\rm{ }}1} \right)^2}\; = {\rm{ }}4.\)

Vận dụng 2

1. Nội dung câu hỏi

Trong Hình 6, tìm các số ghi tại điểm đối xứng qua tâm bia với điểm ghi các số 20; 7; 9.

 

2. Phương pháp giải

Quan sát hình 6 để tìm

 

3. Lời giải chi tiết

Gọi O là tâm bia.

• Lấy điểm A nằm trong ô có điểm ghi số 20. Lấy A’ đối xứng với A qua O.

Khi đó ta được điểm A’ nằm trong ô có điểm ghi số 8.

• Lấy điểm B nằm trong ô có điểm ghi số 7. Lấy B’ đối xứng với B qua O.

Khi đó ta được điểm B’ nằm trong ô có điểm ghi số 18.

• Lấy điểm C nằm trong ô có điểm ghi số 9. Lấy C’ đối xứng với C qua O.

Khi đó ta được điểm C’ nằm trong ô có điểm ghi số 15.

Vậy điểm đối xứng qua tâm bia với điểm ghi các số 20; 7; 9 lần lượt là 8; 18; 15.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved