SGK Toán 11 - Chân trời sáng tạo tập 2

Trả lời câu hỏi mục 1 trang 26, 27, 28

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 1
Hoạt động 2
Thực hành 1
Vận dụng 1
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 1
Hoạt động 2
Thực hành 1
Vận dụng 1

Hoạt động 1

1. Nội dung câu hỏi

Số lượng cá thể vi khuẩn của một mẻ nuôi cấy tuân theo công thức \(P\left( t \right) = {50.10^{kt}}\), trong đó \(t\) là thời gian tính bằng giờ kể từ thời điểm bắt đầu nuôi cấy, \(k\) là hằng số.

(Nguồn: Sinh học 10, NXB Giáo dục Việt Nam, năm 2017, trang 101)

a) Ban đầu mẻ có bao nhiêu cá thể vi khuẩn?

b) Sau 1 giờ thì mẻ có 100 cá thể vi khuẩn. Tìm giá trị của \(k\) (làm tròn kết quả đến hàng phần mười).

c) Sau bao lâu thì số lượng cá thể vi khuẩn đạt đến 50000?

 

2. Phương pháp giải

a) Thay \(t = 0\) vào công thức \(P\left( t \right) = {50.10^{kt}}\).

b) Thay \(t = 1,P\left( t \right) = 100\) vào công thức \(P\left( t \right) = {50.10^{kt}}\).

c) Thay \(P\left( t \right) = 50000\) vào công thức \(P\left( t \right) = {50.10^{kt}}\).

 

3. Lời giải chi tiết

a) Số cá thể vi khuẩn ban đầu mẻ có là:

\(P\left( 0 \right) = {50.10^{k.0}} = {50.10^0} = 50\) (cá thể)

b) Với \(t = 1,P\left( t \right) = 100\) ta có:

\(P\left( 1 \right) = {50.10^{k.1}} \Leftrightarrow 100 = {50.10^k} \Leftrightarrow {10^k} = 2 \Leftrightarrow k = \log 2 \approx 0,3\)

c) Thời gian để số lượng cá thể vi khuẩn đạt đến 50000 là:

\(50000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 1000 \Leftrightarrow 0,3t = \log 1000 \Leftrightarrow 0,3t = 3 \Leftrightarrow t = 10\) (giờ)

Hoạt động 2

1. Nội dung câu hỏi

Cho đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\) như Hình 2a (với \(a > 0\)) hay Hình 2b (với \(0 < a < 1\)). Từ đây, hãy nhận xét về số nghiệm và công thức nghiệm của phương trình \({a^x} = b\) trong hai trường hợp \(b > 0\) và \(b \le 0\).

 

2. Phương pháp giải

Quan sát đồ thị, dựa vào số điểm chung của đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\).

 

3. Lời giải chi tiết

Khi \(b > 0\), đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\) cắt nhau tại một điểm duy nhất. Khi đó phương trình \({a^x} = b\) có nghiệm duy nhất \(x = {\log _a}b\).

Khi \(b \le 0\), đồ thị của hai hàm số \(y = {a^x}\) và \(y = b\) không có điểm chung. Khi đó phương trình \({a^x} = b\)  vô nghiệm.

Thực hành 1

1. Nội dung câu hỏi

Giải các phương trình sau:

a) \({3^{x + 2}} = \sqrt[3]{9}\);    b) \({2.10^{2{\rm{x}}}} = 30\);    c) \({4^{2{\rm{x}}}} = {8^{2{\rm{x}} - 1}}\).

 

2. Phương pháp giải

a) b) Đưa về phương trình \({a^x} = b\).

c) Đưa 2 vế của phương trình về cùng cơ số.

 

3. Lời giải chi tiết

a) \({3^{x + 2}} = \sqrt[3]{9} \Leftrightarrow {3^{x + 2}} = {9^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {\left( {{3^2}} \right)^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {3^{\frac{2}{3}}} \Leftrightarrow x + 2 = \frac{2}{3} \Leftrightarrow x =  - \frac{4}{3}\)

b) \({2.10^{2{\rm{x}}}} = 30 \Leftrightarrow {10^{2{\rm{x}}}} = 15 \Leftrightarrow 2{\rm{x}} = \log 15 \Leftrightarrow x = \frac{1}{2}\log 15\)

c) \({4^{2{\rm{x}}}} = {8^{2{\rm{x}} - 1}} \Leftrightarrow {\left( {{2^2}} \right)^{2{\rm{x}}}} = {\left( {{2^3}} \right)^{2{\rm{x}} - 1}} \Leftrightarrow {2^{4{\rm{x}}}} = {2^{6{\rm{x}} - 3}} \Leftrightarrow 4{\rm{x}} = 6{\rm{x}} - 3 \Leftrightarrow  - 2{\rm{x}} =  - 3 \Leftrightarrow x = \frac{3}{2}\).

Vận dụng 1

1. Nội dung câu hỏi

Công thức tính khối lượng còn lại của một chất phóng xạ từ khối lượng ban đầu \({M_0}\) là \(M\left( t \right) = {M_0}{\left( {\frac{1}{2}} \right)^{\frac{t}{T}}}\), trong đó \(t\) là thời gian tính từ thời điểm ban đầu và \(T\) là chu kì bán rã của chất. Đồng vị plutonium-234 có chu kì bản rã là 9 giờ.

(Nguồn: https://pubchem.ncbi.nlm.nih.gov/element/Plutonium#section=Atomic- Mass-Half-Life-and-Decay)

Từ khối lượng ban đầu 200 g, sau bao lâu thì sau bao lâu thì khối lượng plutonium-234 còn lại là:

a) 100 g?                          

b) 50 g?                            

c) 20 g?

 

2. Phương pháp giải

Thay \({M_0} = 200,T = 9\) và giá trị của \(M\left( t \right)\) vào công thức \(M\left( t \right) = {M_0}{\left( {\frac{1}{2}} \right)^{\frac{t}{T}}}\).

 

3. Lời giải chi tiết

a) Với \({M_0} = 200,T = 9,M\left( t \right) = 100\) ta có:

\(100 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{2} \Leftrightarrow \frac{t}{9} = 1 \Leftrightarrow t = 9\)

Vậy sau 9 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 100 g.

b) Với \({M_0} = 200,T = 9,M\left( t \right) = 50\) ta có:

\(50 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{4} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = {\left( {\frac{1}{2}} \right)^2} \Leftrightarrow \frac{t}{9} = 2 \Leftrightarrow t = 18\)

Vậy sau 18 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 50 g.

c) Với \({M_0} = 200,T = 9,M\left( t \right) = 20\) ta có:

\(20 = 200{\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} \Leftrightarrow {\left( {\frac{1}{2}} \right)^{\frac{t}{9}}} = \frac{1}{{10}} \Leftrightarrow \frac{t}{9} = {\log _{\frac{1}{2}}}\frac{1}{{10}} \Leftrightarrow \frac{t}{9} = {\log _2}10 \Leftrightarrow t = 9{\log _2}10 \approx 29,9\)

Vậy sau 29,9 giờ thì khối lượng plutonium-234 ban đầu 200 g còn lại là 50 g.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved