Luyện tập chung trang 68
Luyện tập chung trang 85
Bài 16. Tam giác cân. Đường trung trực của đoạn thẳng
Bài 13. Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Bài 15. Các trường hợp bằng nhau của tam giác vuông
Bài 12. Tổng các góc trong một tam giác
Bài tập cuối chương IV
Bài 14. Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Luyện tập chung trang 74
HĐ 1
Cắt một hình vuông cạnh bằng 2 dm, rồi cắt nó thành bốn tam giác vuông bằng nhau dọc theo hai đường chéo của hình vuông (H.2.2.a)
Phương pháp giải:
Cắt theo mô tả của đề bài
Lời giải chi tiết:
Bước 1: Cắt một hình vuông cạnh bằng 2 dm
Bước 2: Cắt hình vuông thành bốn tam giác vuông bằng nhau dọc theo hai đường chéo của hình vuông.
HĐ 2
Lấy hai trong bốn tam giác nhận được ở trên ghép thành một hình vuông (H.2.2.b). Em hãy tính diện tích hình vuông nhận được.
Phương pháp giải:
Ghép 2 tam giác như hình.
Diện tích hình vuông = Diện tích hình vuông ban đầu (cạnh 2 dm) : 2
Lời giải chi tiết:
Lấy hai trong bốn tam giác nhận được ở trên ghép thành một hình vuông.
Vì 2 tam giác vuông chiếm một nửa hình vuông ban đầu nên
Diện tích hình vuông thu được là:
2.2:2= 2 (dm2)
HĐ 3
Dùng thước có vạch chia để đo độ dài cạnh hình vuông nhận được trong HĐ2. Độ dài cạnh hình vuông này bằng bao nhiêu đềximét ?
Phương pháp giải:
Bước 1: Dùng thước đo cạnh hình vuông nhận được trong HĐ2, ta được số liệu có đơn vị cm.
Bước 2: Đổi đơn vị cm sang dm.
Lời giải chi tiết:
Dùng thước đo ta được cạnh hình vuông dài khoảng 14 cm.
Ta có: 14 cm = 1,4 dm
Vận dụng
Người xưa đã tính đường kính thân cây theo quy tắc “quân bát, phát tam, tổn ngũ, quân nhị”, tức là lấy chu vi thân cây chia làm 8 phần bằng nhau (quân bát); bớt đi ba phần (phát tam) còn lại 5 phần (tổn ngũ) rồi chia đôi kết quả (quân nhị). Hãy cho biết người xưa đã ước lượng số \(\pi \) bằng bao nhiêu?
Phương pháp giải:
Từ công thức tính chu vi đường tròn: C = \(\pi \). d \(a = \sqrt S \)\( \Rightarrow d = \frac{C}{\pi }\)\(\)
Thực hiện theo quy tắc “quân bát, phát tam, tổn ngũ, quân nhị”
Lời giải chi tiết:
Theo quy tắc “quân bát, phát tam, tổn ngũ, quân nhị”, có: \(d = \frac{C}{8}.5:2 = \frac{C}{8}.5.\frac{1}{2} = \frac{{5C}}{{16}} = \frac{C}{{\frac{{16}}{5}}}\)
Theo công thức, có: \(d = \frac{C}{\pi }\)
Như vậy, người xưa đã ước lượng số \(\pi \) bằng \(\frac{{16}}{5} = 3,2\).
Chương II. Phân tử. Liên kết hóa học
Chủ đề 1. Máy tính và cộng đồng
Cumulative review
Chủ đề 9. Sinh trưởng và phát triển ở sinh vật
Bài 8: Trải nghiệm để trưởng thành
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7