Chuyên đề 2: Phương pháp quy nạp toán học. Nhị thức Newton

Câu hỏi mục 1 trang 31, 32

Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 1
Câu 2
Câu 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Câu 1
Câu 2
Câu 3

Câu 1

a) Quan sát khai triển biểu thức sau:

\({(a + b)^5} = C_5^0{a^5} + C_5^1{a^{5 - 1}}{b^1} + C_5^2{a^{5 - 2}}{b^2} + C_5^3{a^{5 - 3}}{b^3} + C_5^4{a^{5 - 4}}{b^4} + C_5^5{b^5}\)

Từ đó nêu dạng tổng quát của mỗi số hạng trong khai triển biểu thức \({(a + b)^5}\)

b) Xét biểu thức \({(a + b)^n}\) với \(n \in \mathbb{N}*,n \ge 2\)

Nêu dự đoán về dạng tổng quát của mỗi số hạng trong khai triển biểu thức \({(a + b)^n}\)

Lời giải chi tiết:

a) Dạng tổng quát của mỗi số hạng trong khai triển biểu thức \({(a + b)^5}\) là: \(C_5^k{a^{5 - k}}{b^k}\) với \(0 \le k \le 5\)

b) Dự đoán: Dạng tổng quát của mỗi số hạng trong khai triển biểu thức \({(a + b)^n}\) là: \(C_n^k{a^{n - k}}{b^k}\) với \(0 \le k \le n\)

 

Câu 2

Khai triển biểu thức \({\left( {x + 2} \right)^7}\)

Phương pháp giải:

\({(a + b)^7} = C_7^0{a^7} + C_7^1{a^6}b + C_7^2{a^5}{b^2} + C_7^3{a^4}{b^3} + C_7^4{a^3}{b^4} + C_7^5{a^2}{b^5} + C_7^6a{b^6} + C_7^7{b^7}\)

Lời giải chi tiết:

Áp dụng công thức nhị thức Newton, ta có:

\(\begin{array}{l}{(x + 2)^7} = C_7^0{x^7} + C_7^1{x^6}.2 + C_7^2{x^5}{2^2} + C_7^3{x^4}{2^3} + C_7^4{x^3}{2^4} + C_7^5{x^2}{2^5} + C_7^6x{.2^6} + C_7^7{2^7}\\ = {x^7} + 14{x^6} + 84{x^5} + 280{x^4} + 560{x^3} + 672{x^2} + 448x + 128\end{array}\)

 

Câu 3

Cho \(n \in \mathbb{N}*\). Chứng minh \(C_n^0 + C_n^1 + C_n^2 + ... + C_n^{n - 1} + C_n^n = {2^n}\)

Phương pháp giải:

Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Lời giải chi tiết:

Ta có:

\({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)

Cho \(a = b = 1\), ta được:

\(C_n^0 + C_n^1 + C_n^2 + ... + C_n^n = {(1 + 1)^n} = {2^n}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi