Toán 7 tập 1 - Kết nối tri thức với cuộc sống
Toán 7 tập 1 - Kết nối tri thức với cuộc sống

Giải mục 1 trang 33, 34 SGK Toán 7 tập 1 - Kết nối tri thức

Lựa chọn câu hỏi để xem giải nhanh hơn
Luyện tập 1
Câu hỏi
Luyện tập 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Luyện tập 1
Câu hỏi
Luyện tập 2

Luyện tập 1

a) Trong các cách viết: \(\sqrt 2  \in \mathbb{Q}; \pi \in \mathbb{I}; 15 \in \mathbb{R}\), cách viết nào đúng?

b) Viết số đối của các số: \(5,08(299); - \sqrt 5 \)

 

 

Phương pháp giải:

Số hữu tỉ là số viết được dưới dạng \(\frac{a}{b}(a,b \in \mathbb{Z};b \ne 0)\)

Số hữu tỉ và số vô tỉ được gọi chung là số thực

Số đối của số thực a là -a

 

 

Lời giải chi tiết:

a) Ta có: \(\sqrt 2  \notin \mathbb{Q};\pi \in \mathbb{I};15 \in \mathbb{R}\)

Vậy cách viết \(\pi \in \mathbb{I}; 15 \in \mathbb{Q}\) là đúng

b) Số đối của 5,08(299) là -5,08(299)

Số đối của -\(\sqrt 5 \) là \(\sqrt 5 \)

Câu hỏi

Điểm nào trong Hình 2.4 biểu diễn số \( - \sqrt 2 \)? Em có nhận xét gì về điểm biểu diễn của hai số đối nhau?

 

 

Phương pháp giải:

Quan sát trục số, tìm điểm \( - \sqrt 2 \)

Nhận xét điểm biểu diễn của hai số đối nhau

 

 

Lời giải chi tiết:

Điểm biểu diễn số \( - \sqrt 2 \) là điểm N.

Điểm biểu diễn của hai số đối nhau là 2 điểm cách đều gốc O và nằm về 2 phía của điểm O

 

Luyện tập 2

Cho biết nếu một tam giác vuông có hai cạnh góc vuông bằng 1 và 3 thì cạnh huyền của tam giác bằng \(\sqrt {10} \). Em hãy vẽ điểm biểu diễn số - \(\sqrt {10} \) trên trục số.

 

 

Phương pháp giải:

Bước 1: Vẽ tam giác vuông có hai cạnh góc vuông bằng 1 và 3. Đo độ dài của cạnh huyền

Bước 2: Vẽ trục số. Biểu diễn số - \(\sqrt {10} \) trên trục số nằm ở bên trái gốc O, cách O một khoảng bằng độ dài cạnh huyền của tam giác vuông vừa vẽ.

 

 

Lời giải chi tiết:

Chú ý: Các số thực âm được biểu diễn bởi các điểm nằm bên trái điểm O trên trục số.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved