Toán 7 tập 2 - Kết nối tri thức với cuộc sống
Toán 7 tập 2 - Kết nối tri thức với cuộc sống

Giải mục 1 trang 39, 40 SGK Toán 7 tập 2 - Kết nối tri thức

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 1
HĐ 2
Luyện tập 1

1. Làm quen với phép chia đa thức

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 1
HĐ 2
Luyện tập 1

HĐ 1

Tìm thương của mỗi phép chia sau:

a) 12x3 : 4x

b) (-2x4 ) : x4

c) 2x5 : 5x2

 

 

Phương pháp giải:

Bước 1: Chia 2 hệ số

Bước 2: Chia 2 lũy thừa của biến

Bước 3: Nhân 2 kết quả trên, ta được thương

 

 

Lời giải chi tiết:

a) 12x3 : 4x = (12:4) . (x3 : x) = 3.x2

b) (-2x4 ) : x4 = [(-2) : 1] . (x4 : x4) = -2

c) 2x5 : 5x2 = (2:5) . (x5 : x2) = \(\frac{2}{5}\)x3

HĐ 2

Giả sử x \( \ne \)0. Hãy cho biết:

a) Với điều kiện nào ( của hai số mũ) thì thương hai lũy thừa của x cũng là một lũy thừa của x với số mũ nguyên dương?

b) Thương hai lũy thừa của x cùng bậc bằng bao nhiêu?

 

 

Phương pháp giải:

\({x^m}:{x^n} = {x^{m - n}}\)

 

 

Lời giải chi tiết:

a) Do \({x^m}:{x^n} = {x^{m - n}}\) nên muốn thương hai lũy thừa của x cũng là một lũy thừa của x với số mũ nguyên dương, tức là m – n > 0 thì m > n

b) Ta có: \({x^m}:{x^m} = {x^{m - m}} = {x^0} = 1\)

Vậy thương hai lũy thừa của x cùng bậc bằng 1

 

Luyện tập 1

Thực hiện các phép chia sau:

\(\begin{array}{l}a)3{x^7}:\frac{1}{2}{x^4};\\b)( - 2x):x\\c)0,25{x^5}:( - 5{x^2})\end{array}\)

 

 

Phương pháp giải:

Bước 1: Chia 2 hệ số

Bước 2: Chia 2 lũy thừa của biến

Bước 3: Nhân 2 kết quả trên, ta được thương

 

 

Lời giải chi tiết:

\(\begin{array}{l}a)3{x^7}:\dfrac{1}{2}{x^4} = (3:\dfrac{1}{2}).({x^7}:{x^4}) = 6{x^3}\\b)( - 2x):x = [( - 2):1].(x:x) =  - 2\\c)0,25{x^5}:( - 5{x^2}) = [0,25:( - 5)].({x^5}:{x^2}) =  - 0,05.{x^3}\end{array}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved