Câu hỏi mục 2 trang 52, 53

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ2
Thực hành 2
Vận dụng 2
Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ2
Thực hành 2
Vận dụng 2

HĐ2

Cho điểm \(M(x;y)\)nằm trên hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

a) Chứng minh rằng \({F_1}{M^2} - {F_2}{M^2} = 4cx\)

b) Giả sử điểm \(M(x;y)\) thuộc nhánh đi qua \({A_1}( - a;0)\) (Hình 5a). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất \(M{F_2} - M{F_1} = 2a\) đã biết để chứng minh \(M{F_2} + M{F_1} =  - 2\frac{{cx}}{a}\). Từ đó, chứng minh các công thức: \(M{F_1} =  - a - \frac{c}{a}{x_0};M{F_2} = a - \frac{c}{a}{x_0}\)

b) Giả sử điểm \(M(x;y)\) thuộc nhánh đi qua \({A_2}(a;0)\) (Hình 5b). Sử dụng kết quả đã chứng minh được ở câu a) kết hợp với tính chất \(M{F_1} - M{F_2} = 2a\) đã biết để chứng minh \(M{F_2} + M{F_1} = 2\frac{{cx}}{a}\). Từ đó, chứng minh các công thức: \(M{F_1} = a + \frac{c}{a}{x_0};M{F_2} =  - a + \frac{c}{a}{x_0}\)

Lời giải chi tiết:

a) Tính \(M{F_1}^2 - M{F_2}^2\)

Ta có: \(\overrightarrow {F{M_1}} (x + c;y);\overrightarrow {{F_2}M} (x - c;y)\)

\( \Rightarrow {F_1}{M^2} = {(x + c)^2} + {y^2};M{F_2}^2 = {(x - c)^2} + {y^2}\)

\( \Rightarrow {F_1}{M^2} - {F_2}{M^2} = {(x + c)^2} - {(x - c)^2} = 4c{x_0}\)

b) Khi điểm \(M({x_0};{y_0})\) thuộc nhánh chứa đỉnh \({A_1}( - a;0)\) (\(M{F_2} - M{F_1} = 2a\)),

 \(\begin{array}{l}M{F_1} + M{F_2} = \frac{{M{F_1}^2 - M{F_2}^2}}{{M{F_1} - M{F_2}}} =  - \frac{{2c}}{a}x\\M{F_1} = \frac{{\left( { - \frac{{2c}}{a}x} \right) - 2a}}{2} =  - a - \frac{c}{a}x\\M{F_2} = \frac{{\left( { - \frac{{2c}}{a}x} \right) + 2a}}{2} = a - \frac{c}{a}x\end{array}\)

c) Khi điểm \(M(x;y)\) thuộc nhánh chứa đỉnh \({A_2}(a;0)\) (\(M{F_1} - M{F_2} = 2a\)),

 \(\begin{array}{l}M{F_1} + M{F_2} = \frac{{M{F_1}^2 - M{F_2}^2}}{{M{F_1} - M{F_2}}} = \frac{{2c}}{a}x\\M{F_1} = \frac{{\frac{{2c}}{a}x + 2a}}{2} = a + \frac{c}{a}x\\M{F_2} = \frac{{\frac{{2c}}{a}x - 2a}}{2} =  - a + \frac{c}{a}x\end{array}\)

 

Thực hành 2

Tính độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) trên hypebol (H): \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\)

Phương pháp giải:

Cho điểm \(M(x;y)\)nằm trên hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

Độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) là:

\(M{F_1} = \left| {a + \frac{c}{a}x} \right|;M{F_2} = \left| {a - \frac{c}{a}x} \right|\)

Lời giải chi tiết:

Hypebol (H): \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{36}} = 1\) có \(a = 8,b = 6\) suy ra \(c = \sqrt {{a^2} + {b^2}}  = 10\).

Độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) là:

\(M{F_1} = \left| {a + \frac{c}{a}x} \right| = \left| {8 + \frac{3}{4}x} \right|;M{F_2} = \left| {a - \frac{c}{a}x} \right| = \left| {8 - \frac{3}{4}x} \right|\)

 

Vận dụng 2

Tính độ dài hai bán kính qua tiêu của đỉnh \({A_2}(a;0)\) trên hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

Phương pháp giải:

Cho điểm \(M(x;y)\)nằm trên hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)

Độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) là:

\(M{F_1} = \left| {a + \frac{c}{a}x} \right|;M{F_2} = \left| {a - \frac{c}{a}x} \right|\)

Lời giải chi tiết:

Độ dài hai bán kính qua tiêu của điểm \({A_2}(a;0)\) trên (H) là:

\(M{F_1} = \left| {a + \frac{c}{a}x} \right| = \left| {a + \frac{c}{a}a} \right| = a + c;M{F_2} = \left| {a - \frac{c}{a}x} \right| = \left| {a - \frac{c}{a}a} \right| = c - a.\)

 

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved