Chuyên đề 2: Phương pháp quy nạp toán học. Nhị thức Newton

Câu hỏi mục 2 trang 25, 26

Lựa chọn câu hỏi để xem giải nhanh hơn
Luyện tập – vận dụng 2
Luyện tập – vận dụng 3
Lựa chọn câu hỏi để xem giải nhanh hơn
Luyện tập – vận dụng 2
Luyện tập – vận dụng 3

Luyện tập – vận dụng 2

Chứng minh với mọi \(n \in \mathbb{N}*,{(1 + \sqrt 2 )^n},{(1 - \sqrt 2 )^n}\) lần lượt viết được ở dạng \({a_n} + {b_n}\sqrt 2 ,{a_n} - {b_n}\sqrt 2 ,\) trong đó \({a_n},{b_n}\) là các số nguyên dương.

Phương pháp giải:

Chứng minh mệnh đề P(n) đúng với \(n \ge p\) thì:

Bước 1: Chứng tỏ mệnh đề đúng với \(n = p\)

Bước 2: Với k là một số nguyên dương tùy ý mà P(k) là mệnh đề đúng, ta chứng tỏ P(k+1) cũng là mệnh đề đúng.

Lời giải chi tiết:

Bước 1: Khi \(n = 1\) ta có \({\left( {1 + \sqrt 2 } \right)^1} = 1 + \sqrt 2 ;{\left( {1 - \sqrt 2 } \right)^1} = 1 - \sqrt 2 \) có dạng \({a_1} + {b_1}\sqrt 2 ,{a_1} - {b_1}\sqrt 2 \) với \({a_1} = 1;{b_1} = 1\) là các số nguyên dương

Vậy mệnh đề đúng với \(n = 1\)

Bước 2: Với k là một số nguyên dương tùy ý mà mệnh đề đúng, ta phải chứng minh mệnh đề đúng với k+1, tức là:

\({\left( {1 + \sqrt 2 } \right)^{k + 1}};{\left( {1 - \sqrt 2 } \right)^{k + 1}}\) có dạng \({a_{k + 1}} + {b_{k + 1}}\sqrt 2 ;{a_{k + 1}} - {b_{k + 1}}\sqrt 2 \) với \({a_{k + 1}};{b_{k + 1}}\) là các số nguyên dương.

Thật vậy, theo giả thiết quy nạp ta có:

\({\left( {1 + \sqrt 2 } \right)^k} = {a_k} + {b_k}\sqrt 2 ;{\left( {1 - \sqrt 2 } \right)^k} = {a_k} - {b_k}\sqrt 2 \) với \({a_k};{b_k}\) là các số nguyên dương.

Suy ra

\(\begin{array}{l}{\left( {1 + \sqrt 2 } \right)^{k + 1}} = {\left( {1 + \sqrt 2 } \right)^k}\left( {1 + \sqrt 2 } \right)\\ = \left( {{a_k} + {b_k}\sqrt 2 } \right)\left( {1 + \sqrt 2 } \right) = {a_k} + {b_k}\sqrt 2  + {a_k}\sqrt 2  + {b_k}{\left( {\sqrt 2 } \right)^2}\\ = \left( {{a_k} + 2{b_k}} \right) + \left( {{a_k} + {b_k}} \right)\sqrt 2 \\ = {a_{k + 1}} + {b_{k + 1}}\sqrt 2 \end{array}\)

Trong đó \({a_{k + 1}} = {a_k} + 2{b_k} \in \mathbb{N}*;{b_{k + 1}} = {a_k} + {b_k} \in \mathbb{N}*\)

Vậy mệnh đề đúng với k+1. Do đó, theo nguyên lí quy nạp toán học, mệnh đề đúng với mọi \(n \in \mathbb{N}*\).

Luyện tập – vận dụng 3

Chứng minh \({16^n} - 15n - 1\) chia hết cho 225 với mọi \(n \in \mathbb{N}*\).

Phương pháp giải:

Chứng minh mệnh đề P(n) đúng với \(n \ge p\) thì:

Bước 1: Chứng tỏ mệnh đề đúng với \(n = p\)

Bước 2: Với k là một số nguyên dương tùy ý mà P(k) là mệnh đề đúng, ta chứng tỏ P(k+1) cũng là mệnh đề đúng.

Lời giải chi tiết:

Bước 1: Khi \(n = 1\) ta có \({16^1} - 15.1 - 1 = 0\) chia hết cho 225.

Vậy mệnh đề đúng với \(n = 1\)

Bước 2: Với k là một số nguyên dương tùy ý mà mệnh đề đúng, ta phải chứng minh mệnh đề đúng với k+1, tức là:

\({16^{k + 1}} - 15(k + 1) - 1\) chia hết cho 225.

Thật vậy, theo giả thiết quy nạp ta có:

\({16^k} - 15k - 1\) chia hết cho 225.

Suy ra

\(\begin{array}{l}{16^{k + 1}} - 15(k + 1) - 1 = {16.16^k} - 15k - 16\\ = 16\left( {{{16}^k} - 15k - 1} \right) + 16(15k + 1) - 15k - 16\\ = 16\left( {{{16}^k} - 15k - 1} \right) + 225k\end{array}\)

Chia hết cho 225

Vậy mệnh đề đúng với k+1. Do đó, theo nguyên lí quy nạp toán học, mệnh đề đúng với mọi \(n \in \mathbb{N}*\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Bình luận (0)
Bạn cần đăng nhập để bình luận
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved
gift-box
survey
survey
Đặt câu hỏi