Bài tập cuối chương VIII
Bài 1. Góc và cạnh của một tam giác
Bài 8. Tính chất ba đường cao của tam giác
Bài 9. Tính chất ba đường phân giác của tam giác
Bài 5. Đường trung trực của một đoạn thẳng
Bài 4. Đường vuông góc và đường xiên
Bài 7. Tính chất ba đường trung tuyến của tam giác
Bài 10. Hoạt động thực hành và trải nghiệm: Làm giàn hoa tam giác để trang trí lớp học
Bài 2. Tam giác bằng nhau
Bài 3. Tam giác cân
Bài 6. Tính chất ba đường trung trực của tam giác
HĐ 2
HĐ 2
Thực hiện phép nhân \((3x + 1)({x^2} - 2x + 1)\), rồi đoán xem \((3{x^3} - 5{x^2} + x + 1):(3x + 1)\) bằng đa thức nào.
Phương pháp giải:
Lời giải chi tiết:
\(\begin{array}{l}(3x + 1)({x^2} - 2x + 1)\\ = 3x({x^2} - 2x + 1) + 1({x^2} - 2x + 1)\\ = 3{x^3} - 6{x^2} + 3x + {x^2} - 2x + 1\\ = 3{x^3} - 5{x^2} + x + 1\end{array}\)
Vì \((3x + 1)({x^2} - 2x + 1) = 3{x^3} - 5{x^2} + x + 1\)
\( \Rightarrow (3{x^3} - 5{x^2} + x + 1):(3x + 1) = {x^2} - 2x + 1\)
Thực hành 2
Thực hành 2
Thực hiện phép chia P(x) = \((6{x^2} + 4x)\) cho Q(x) = 2x
Phương pháp giải:
Lời giải chi tiết:
\((6{x^2} + 4x):2x = (6{x^2}:2x) + (4x:2x)\)
\( = 3x + 2\)
Vận dụng 2
Vận dụng 2
Thực hiện các phép chia sau \(\frac{{9{x^2} + 5x + x}}{{3x}}\) và \(\frac{{(2{x^2} - 4x) + (x - 2)}}{{2 - x}}\)
Phương pháp giải:
Lời giải chi tiết:
\(\frac{{9{x^2} + 5x + x}}{{3x}} = \frac{{9{x^2} + 6x}}{{3x}} = \frac{{9{x^2}}}{{3x}} + \frac{{6x}}{{3x}} = 3x + 2\)
\(\frac{{2{x^2} - 3x - 2}}{{2 - x}} = \frac{{2{x^2} - 3x - 2}}{{ - x + 2}} = - 2x - 1\)
Thực hành 3
Thực hành 3
Thực hiện phép chia \(({x^2} + 5x + 9):(x + 2)\)
Phương pháp giải:
Ta sử dụng qui tắc chia 2 đa thức
Lời giải chi tiết:
\(({x^2} + 2x + 9):(x + 2) = \frac{{{x^2} + 5x + 9}}{{3x + 6}} = x + 3 + \frac{3}{{x + 2}}\) ta có :
Vậy \( = x + 3 + \frac{3}{{x + 2}}\)
Vận dụng 3
Vận dụng 3
Tính diện tích đáy của một hình hộp chữ nhật (Hình 3) có chiều cao bằng (x + 3) cm và có thể tích bằng \(({x^3} + 8{x^2} + 19x + 12)\)\(c{m^3}\)
Phương pháp giải:
Ta tính diện tích đáy của hình hộp chữ nhật có chiều cao là (x+3) cm
Ta sử dụng công thức V = S.h để tìm ra diện tích đáy
Lời giải chi tiết:
\( \Rightarrow ({x^3} + 8{x^2} + 19x + 12):(x + 3) =\) diện tích đáy
Ta có :
Vậy diện tích đáy là : \({x^2} + 5x + 4\) \(c{m^2}\)
Chương 2. Số thực
Unit 6. Survival
Chương 4: Tam giác bằng nhau
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Khoa học tự nhiên lớp 7
Bài 2. Khúc nhạc tâm hồn
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7