Hoạt động 2
1. Nội dung câu hỏi
Dùng định nghĩa, tính đạo hàm của hàm số \(y = \sqrt x \) tại điểm \(x = {x_0}\) với \({x_0} > 0\).
2. Phương pháp giải
Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
3. Lời giải chi tiết
Với bất kì \({x_0} > 0\), ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt x - \sqrt {{x_0}} }}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt x - \sqrt {{x_0}} } \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}}{{\left( {x - {x_0}} \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{x - {x_0}}}{{\left( {x - {x_0}} \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{\sqrt x + \sqrt {{x_0}} }} = \frac{1}{{\sqrt {{x_0}} + \sqrt {{x_0}} }} = \frac{1}{{2\sqrt {{x_0}} }}\end{array}\)
Vậy \(f'\left( x \right) = {\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\) trên \(\left( {0; + \infty } \right)\).
Thực hành 2
1. Nội dung câu hỏi
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \sqrt x \) tại điểm có hoành độ bằng 4.
2. Phương pháp giải
Hệ số góc: \(f'\left( {{x_0}} \right)\).
Phương trình tiếp tuyến: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\).
3. Lời giải chi tiết
\({y_0} = \sqrt 4 = 2\)
Ta có: \({\left( {\sqrt x } \right)^\prime } = \frac{1}{{2\sqrt x }}\) nên tiếp tuyến của \(\left( C \right)\) tại điểm \(M\left( {4;2} \right)\) có hệ số góc là: \(f'\left( 4 \right) = \frac{1}{{2\sqrt 4 }} = \frac{1}{4}\)
Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là:
\(y - 2 = \frac{1}{4}\left( {x - 4} \right) \Leftrightarrow y = \frac{1}{4}x - 1 + 2 \Leftrightarrow y = \frac{1}{4}x + 1\).
Thực hành 3
1. Nội dung câu hỏi
Tìm đạo hàm của các hàm số:
a) \(y = \sqrt[4]{x}\) tại \(x = 1\);
b) \(y = \frac{1}{x}\) tại \(x = - \frac{1}{4}\);
2. Phương pháp giải
a) Sử dụng công thức \({\left( {{x^\alpha }} \right)^\prime } = \alpha {x^{\alpha - 1}}\left( {x > 0} \right)\).
b) Sử dụng công thức \({\left( {\frac{1}{x}} \right)^\prime } = - \frac{1}{{{x^2}}}\left( {x \ne 0} \right)\).
3. Lời giải chi tiết
a) \(y' = {\left( {\sqrt[4]{x}} \right)^\prime } = {\left( {{x^{\frac{1}{4}}}} \right)^\prime } = \frac{1}{4}{x^{\frac{1}{4} - 1}} = \frac{1}{4}{x^{ - \frac{3}{4}}} = \frac{1}{{4\sqrt[4]{{{x^3}}}}}\)
\(y'\left( 1 \right) = \frac{1}{{4\sqrt[4]{{{1^3}}}}} = \frac{1}{4}\).
b) \(y' = {\left( {\frac{1}{x}} \right)^\prime } = - \frac{1}{{{x^2}}}\)
\(y'\left( { - \frac{1}{4}} \right) = - \frac{1}{{{{\left( { - \frac{1}{4}} \right)}^2}}} = - 16\).
Chương VII. Ô tô
Bài 7: Tiết 3. Thực hành: Tìm hiểu về Liên minh châu Âu - Tập bản đồ Địa lí 11
Chuyên đề II. Làm quen với một vài yếu tố của lí thuyết đồ thị
CHƯƠNG VI: KHÚC XẠ ÁNH SÁNG
Dương phụ hành - Cao Bá Quát
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11