SGK Toán 11 - Chân trời sáng tạo tập 2

Trả lời câu hỏi mục 2 trang 66, 67

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Hoạt động 3
Thực hành 1
Vận dụng 1
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 2
Hoạt động 3
Thực hành 1
Vận dụng 1

Hoạt động 2

1. Nội dung câu hỏi

Từ một điểm \(O\) vẽ hai tia \(Ox\) và \(Oy\) lần lượt vuông góc với hai bức tường trong phòng. Đo góc \(xOy\).

 

2. Phương pháp giải

Thực hành đo góc và trả lời câu hỏi.

 

3. Lời giải chi tiết

\(\widehat {xOy} = {90^ \circ }\).

Hoạt động 3

1. Nội dung câu hỏi

Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) cắt nhau theo giao tuyến \(d\) điểm \(M\) không thuộc \(\left( P \right)\) và \(\left( Q \right)\). Gọi \(H\) và \(K\) lần lượt là hình chiếu vuông góc của \(M\) lên \(\left( P \right)\) và \(\left( Q \right)\). Gọi \(O\) là giao điểm của \(d\) và \(\left( {MHK} \right)\) (Hình 8). 

a) Giả sử \(\left( P \right) \bot \left( Q \right)\), hãy cho biết tứ giác \(MHOK\) là hình gì? Tìm trong \(\left( P \right)\) đường thẳng vuông góc với \(\left( Q \right)\).

b) Giả sử \(\left( P \right)\) chứa đường thẳng \(a\) với \(a \bot \left( Q \right)\), hãy cho biết tứ giác \(MHOK\) là hình gì? Tính góc giữa \(\left( P \right)\) và \(\left( Q \right)\).

 

2. Phương pháp giải

Sử dụng định nghĩa: Góc giữa hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) là góc giữa hai đường thẳng lần lượt vuông góc với \(\left( \alpha  \right)\) và \(\left( \beta  \right)\).

 

3. Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}MH \bot \left( P \right) \Rightarrow MH \bot OH\\MK \bot \left( Q \right) \Rightarrow MK \bot OK\\\left( {\left( P \right),\left( Q \right)} \right) = {90^ \circ } \Rightarrow \left( {MH,MK} \right) = {90^ \circ } \Rightarrow MH \bot MK\end{array}\)

Tứ giác \(MHOK\) có \(\widehat {MHO} = \widehat {MK{\rm{O}}} = \widehat {HMK} = {90^ \circ }\).

Vậy tứ giác \(MHOK\) là hình chữ nhật.

Trong \(\left( P \right)\) có đường thẳng \(OH\) vuông góc với \(\left( Q \right)\).

b) Ta có:

\(\left. \begin{array}{l}a \bot \left( Q \right) \Rightarrow a \bot OK\\MH \bot \left( P \right) \Rightarrow MH \bot a\end{array} \right\} \Rightarrow MH\parallel OK\)

Lại có \(MH \bot \left( P \right)\). Vậy \(OK \bot \left( P \right) \Rightarrow OK \bot OH\)

Tứ giác \(MHOK\) có \(\widehat {MHO} = \widehat {MK{\rm{O}}} = \widehat {HOK} = {90^ \circ }\).

Vậy tứ giác \(MHOK\) là hình chữ nhật.

\(\left( {\left( P \right),\left( Q \right)} \right) = \left( {MH,MK} \right) = \widehat {HMK} = {90^ \circ }\).

Thực hành 1

1. Nội dung câu hỏi

Cho hình chóp \(S.ABCD\) có các cạnh bên bằng nhau và đáy là hình vuông. Chứng minh rằng:

a) \(\left( {SAC} \right) \bot \left( {ABCD} \right)\);

b) \(\left( {SAC} \right) \bot \left( {SBD} \right)\).

 

2. Phương pháp giải

Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng.

 

3. Lời giải chi tiết

 

a) Gọi \(O = AC \cap B{\rm{D}}\).

Tam giác \(SAC\) cân tại \(S \Rightarrow SO \bot AC\)

Tam giác \(SB{\rm{D}}\) cân tại \(S \Rightarrow SO \bot B{\rm{D}}\)

\(\left. \begin{array}{l} \Rightarrow SO \bot \left( {ABCD} \right)\\SO \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow \left( {SAC} \right) \bot \left( {ABCD} \right)\)

b) \(ABCD\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)

\(SO \bot AC\)

\(\left. \begin{array}{l} \Rightarrow AC \bot \left( {SB{\rm{D}}} \right)\\AC \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow \left( {SAC} \right) \bot \left( {SB{\rm{D}}} \right)\)

Vận dụng 1

1. Nội dung câu hỏi

Mô tả cách kiểm tra một bức tường vuông góc với mặt sàn bằng hai cái êke trong Hình 10.

 

2. Phương pháp giải

Sử dụng định lí 1: Điều kiện cần và đủ để hai mặt phẳng vuông góc là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

 

3. Lời giải chi tiết

Đặt êke sao cho hai cạnh góc vuông của hai êke chạm nhau tạo thành một đường thẳng, hai cạnh còn lại của hai êke sát với mặt sàn.

Nếu đường thẳng đó nằm sát với bức tường thì bức tường vuông góc với mặt sàn.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved