Luyện tập 3
Giải tam giác ABC, biết b = 32, c =45, \(\widehat A = {87^o}\)
Phương pháp giải:
Tính độ dài các cạnh và các góc còn lại của tam giác.
Bước 1: Tính a: \({a^2} = {b^2} + {c^2} - 2.bc.\cos A\)
Bước 2: Tính sinB, suy ra góc B, góc C.
Lời giải chi tiết:
Ta cần tính cạnh BC, góc B và góc C.
Áp dụng định lí cosin tại đỉnh A ta có:
\({a^2} = {b^2} + {c^2} - \,2b\,c.\cos A\)
\(\begin{array}{l} \Leftrightarrow B{C^2} = {32^2} + {45^2} - 2.32.45.\cos {87^o}\\ \Leftrightarrow B{C^2} \approx 2898,27\\ \Leftrightarrow BC \approx 53,8\end{array}\)
Theo định lí sin, ta có:
\(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \Rightarrow \sin B = \frac{{b.\sin A}}{a} = \frac{{32.\sin {{87}^o}}}{{53,8}} \approx 0,594.\)
\( \Rightarrow \widehat B \approx 36,{44^o}\) hoặc \(\widehat B \approx 143,{56^o}\)(Loại vì \(\widehat A + \widehat B = 230,{56^o} > {180^o}\))
\( \Rightarrow \widehat C = {180^o} - \widehat A - \widehat B \approx {180^o} - {87^o} - 36,{44^o} = 56,{56^o}\)
Vậy tam giác ABC có \(BC \approx 53,8\); \(\widehat B \approx 36,{44^o}\) và \(\widehat C = 56,{56^o}\).
Vận dụng 2
Từ một khu vực có thể quan sát được hai đỉnh núi, ta có thể ngắm và đo để xác định khoảng cách giữa hai đỉnh núi đó. Hãy thảo luận để đưa ra các bước cho một cách đo.
Phương pháp giải:
Bước 1: Cố định vị trí đứng ngắm, xác định góc ngắm .
Bước 2: Đo khoảng cách từ vị trí ngắm tới từng đỉnh núi..
Bước 3: Áp dụng định lí cosin để xác định khoảng cách giữa hai đỉnh núi.
Lời giải chi tiết:
Bước 1: Tại khu vực quan sát, đặt một cọc tiêu cố định tại vị trí A. Kí hiệu hai đỉnh núi lần lượt là điểm B và điểm C.
+) Đứng tại A, ngắm điểm B và điểm C để đo góc tạo bởi hai hướng ngắm đó.
Bước 2: Đo khoảng cách từ vị trí ngắm đến từng đỉnh núi, tức là tính AB, AC.
+) Đứng tại A, ngắm đỉnh núi B để xác định góc ngắm so với mặt đất, kí hiệu là góc \(\alpha \).
+) Theo hướng ngắm, đặt tiếp cọc tiêu tại D gần đỉnh núi hơn và đo đoạn AD. Xác định góc ngắm tại điểm D, kí hiệu là góc\(\beta \)
Hình vẽ:
Dễ dàng tính được góc \(\widehat {DBA} = {180^o} - \alpha - \beta .\)
Áp dụng định lí sin cho tam giác ABD ta được: \(\frac{{AB}}{{\sin D}} = \frac{{DA}}{{\sin B}} \Rightarrow AB = \sin D.\frac{{DA}}{{\sin B}} = \sin \left( {{{180}^o} - \beta } \right).\frac{{DA}}{{\sin \left( {{{180}^o} - \alpha - \beta } \right)}}.\)
Bước 3: Tính khoảng cách giữa hai đỉnh núi, bằng cách áp dụng định lí cosin cho tam giác ABC để tính độ dài cạnh BC.
Chủ đề 5: Tín dụng và cách sử dụng các dịch vụ tín dụng
Chương 3. Chuyển động biến đổi
Bài mở đầu
Chương IV. Văn minh Đông Nam Á cổ-trung đại
Unit 6: Time to learn
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10