HĐ3
Cho hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\). Chứng tỏ rằng \(\frac{c}{a} > 1.\)
Lời giải chi tiết:
Ta có:\(a > 0,b > 0\) và \(c = \sqrt {{a^2} + {b^2}} > \sqrt {{a^2}} = a \Rightarrow \frac{c}{a} > 1.\)
Thực hành 3
Tìm tâm sai của các hypebol sau:
a) \(({H_1}):\frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1\)
b) \(({H_2}):\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{25}} = 1\)
c) \(({H_3}):\frac{{{x^2}}}{3} - \frac{{{y^2}}}{3} = 1\)
Phương pháp giải:
Cho hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)
Bước 1: Xác định a, b suy ra \(c = \sqrt {{a^2} + {b^2}} \)
Bước 2: Tính tâm sai \(e = \frac{c}{a}\)
Lời giải chi tiết:
a) \(({H_1}):\frac{{{x^2}}}{4} - \frac{{{y^2}}}{1} = 1\)
Ta có: \(a = 2,b = 1\), suy ra \(c = \sqrt {{a^2} + {b^2}} = \sqrt 5 \)
Vậy tâm sai của \(({H_1})\) là \(e = \frac{c}{a} = \frac{{\sqrt 5 }}{2}\)
b) \(({H_2}):\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{25}} = 1\)
Ta có: \(a = 3,b = 5\), suy ra \(c = \sqrt {{a^2} + {b^2}} = \sqrt {34} \)
Vậy tâm sai của \(({H_2})\) là \(e = \frac{c}{a} = \frac{{\sqrt {34} }}{3}\)
c) \(({H_3}):\frac{{{x^2}}}{3} - \frac{{{y^2}}}{3} = 1\)
Ta có: \(a = b = \sqrt 3 \), suy ra \(c = \sqrt {{a^2} + {b^2}} = \sqrt 6 \)
Vậy tâm sai của \(({H_1})\) là \(e = \frac{c}{a} = \frac{{\sqrt 6 }}{{\sqrt 3 }} = \sqrt 2 \)
Vận dụng 3
Cho hypebol (H) có tâm sai bằng \(\sqrt 2 \). Chứng minh trục thực và trục ảo của (H) có độ dài bằng nhau
Phương pháp giải:
Cho hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)
+ Tâm sai \(e = \frac{c}{a} = \frac{{\sqrt {{a^2} + {b^2}} }}{a}\)
+ Độ dài trục thực và trục ảo: \(2a\) và \(2b\)
Lời giải chi tiết:
Ta có hypebol (H) có tâm sai là \(e = \sqrt 2 \)
\(\begin{array}{l} \Leftrightarrow e = \frac{c}{a} = \frac{{\sqrt {{a^2} + {b^2}} }}{a} = \sqrt 2 \\ \Leftrightarrow {a^2} + {b^2} = 2{a^2}\\ \Leftrightarrow {a^2} = {b^2}\end{array}\)
\( \Leftrightarrow a = b\) (do \(a > 0,b > 0\))
\( \Rightarrow 2a = 2b\) hay trục thực và trục ảo của (H) có độ dài bằng nhau.
Vận dụng 4
Một vật thể có quỹ đạo là một nhánh của hypebol (H), nhận tâm Mặt Trời làm tiêu điểm (Hình 6). Cho biết tâm sai của (H) bằng 1,2 và khoảng cách gần nhất giữa vật thể và tâm Mặt trời là \({2.10^8}\) km.
a) Lập phương trình chính tắc của (H)
b) Lập công thức tính bán kính qua tiêu của vị trí \(M(x;y)\) của vật thể trong mặt phẳng tọa độ.
Phương pháp giải:
Cho hypebol (H): \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\), \(M(x;y)\) thuộc (H).
+ Tâm sai \(e = \frac{c}{a}\)
+ Độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) trên (H) là:
\(M{F_1} = \left| {a + \frac{c}{a}x} \right|;M{F_2} = \left| {a - \frac{c}{a}x} \right|\)
+ Khoảng cách gần nhất từ \(M(x;y)\) trên (H) đến một tiêu điểm là: \(c - a.\)
Lời giải chi tiết:
a) Gọi phương trình chính tắc của (H) là: \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\)
+ Tâm sai \(e = \frac{c}{a} = 1,2\)
+ Khoảng cách gần nhất từ \(M(x;y)\) trên (H) đến một tiêu điểm là: \(c - a = {2.10^8}\)
\( \Rightarrow a = {10^9},c = {12.10^8} \Rightarrow {b^2} = {c^2} - {a^2} = {44.10^{16}}\)
\( \Rightarrow \) PTCT của (H) là \(\frac{{{x^2}}}{{{{10}^{18}}}} - \frac{{{y^2}}}{{{{44.10}^{16}}}} = 1\)
b) Độ dài hai bán kính qua tiêu của điểm \(M(x;y)\) trên (H) là:
\(M{F_1} = \left| {a + \frac{c}{a}x} \right| = \left| {{{10}^9} + 1,2x} \right|;M{F_2} = \left| {a - \frac{c}{a}x} \right| = \left| {{{10}^9} - 1,2x} \right|\)
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Vật lí lớp 10
Chủ đề 4. Sản xuất kinh doanh và các mô hình sản xuất kinh doanh
Bài 6. Một số hiểu biết về an ninh mạng
Nắng đã hanh rồi
Review 2
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10