Hoạt động 5
1. Nội dung câu hỏi
Hai người thợ trong hình đang thả dây dọi từ một điểm \(M\) trên trần nhà và đánh dấu điểm \(M'\) nơi đầu nhọn quả dọi chạm sàn. Có nhận xét gì về đường thẳng \(MM'\) với mặt sàn?
2. Phương pháp giải
Quan sát hình ảnh và trả lời câu hỏi.
3. Lời giải chi tiết
Đường thẳng \(MM'\) vuông góc với mặt sàn.
Thực hành 4
1. Nội dung câu hỏi
Cho hình chóp \(S.ABCD\) có \(SA \bot \left( {ABCD} \right)\) và đáy \(ABCD\) là hình chữ nhật. Xác định hình chiếu vuông góc của điểm \(C\), đường thẳng \(CD\) và tam giác \(SC{\rm{D}}\) trên mặt phẳng \(\left( {SAB} \right)\).
2. Phương pháp giải
Sử dụng phép chiếu vuông góc.
3. Lời giải chi tiết
• Ta có:
\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\\AB \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\)
Vậy \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).
• Ta có:
\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot A{\rm{D}}\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)
Vậy \(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).
Lại có \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).
Vậy đường thẳng \(AB\) là hình chiếu vuông góc của đường thẳng \(CD\) trên mặt phẳng \(\left( {SAB} \right)\).
• Ta có:
\(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).
\(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).
\(S \in \left( {SAB} \right)\)
Vậy tam giác \(SAB\) là hình chiếu vuông góc của tam giác \(SCD\) trên mặt phẳng \(\left( {SAB} \right)\).
Hoạt động 6
1. Nội dung câu hỏi
Cho đường thẳng \(a\) nằm trong mặt phẳng \(\left( P \right)\) và \(b\) là đường thẳng không thuộc \(\left( P \right)\) và không vuông góc với \(\left( P \right)\). Lấy hai điểm \(A,B\) trên \(b\) và gọi \(A',B'\) lần lượt là hình chiếu vuông góc của \(A\) và \(B\) trên \(\left( P \right)\).
a) Xác định hình chiếu \(b'\) của \(b\) trên \(\left( P \right)\).
b) Cho \(a\) vuông góc với \(b\), nêu nhận xét về vị trí tương đối giữa:
i) đường thẳng \(a\) và \(mp\left( {b,b'} \right)\);
ii) hai đường thẳng \(a\) và \(b'\).
c) Cho \(a\) vuông góc với \(b'\), nêu nhận xét về vị trí tương đối giữa:
i) đường thẳng \(a\) và \(mp\left( {b,b'} \right)\);
ii) giữa hai đường thẳng \(a\) và \(b\).
2. Phương pháp giải
Sử dụng định lí: Nếu đường thẳng \(d\) vuông góc với hai đường thẳng cắt nhau \(a\) và \(b\) cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).
3. Lời giải chi tiết
a) Ta có: \(AA' \bot \left( P \right),BB' \bot \left( P \right),A,B \in b\)
Vậy hình chiếu vuông góc của đường thẳng \(b\) trên mặt phẳng \(\left( P \right)\) là đường thẳng \(A'B'\).
Vậy \(b' \equiv A'B'\).
b) Ta có:
\(\left. \begin{array}{l}AA' \bot \left( P \right) \Rightarrow AA' \bot a\\a \bot b\end{array} \right\} \Rightarrow a \bot mp\left( {b,b'} \right)\)
\(\left. \begin{array}{l}a \bot mp\left( {b,b'} \right)\\b' \subset mp\left( {b,b'} \right)\end{array} \right\} \Rightarrow a \bot b'\)
c) Ta có:
\(\left. \begin{array}{l}AA' \bot \left( P \right) \Rightarrow AA' \bot a\\a \bot b'\end{array} \right\} \Rightarrow a \bot mp\left( {b,b'} \right)\)
\(\left. \begin{array}{l}a \bot mp\left( {b,b'} \right)\\b \subset mp\left( {b,b'} \right)\end{array} \right\} \Rightarrow a \bot b\)
Thực hành 5
1. Nội dung câu hỏi
Cho tứ diện \(OABC\) có \(OA,OB,OC\) đôi một vuông góc. Vẽ đường thẳng qua \(O\) và vuông góc với \(\left( {ABC} \right)\) tại \(H\). Chứng minh \(AH \bot BC\).
2. Phương pháp giải
Cách chứng minh hai đường thẳng vuông góc:
Cách 1: Chứng minh góc giữa chúng bằng \({90^ \circ }\).
Cách 2: Chứng minh đường thẳng này vuông góc với một mặt phẳng chứa đường thẳng kia.
3. Lời giải chi tiết
\(\begin{array}{l}\left. \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OA \bot \left( {OBC} \right) \Rightarrow OA \bot BC\\OH \bot \left( {ABC} \right) \Rightarrow OH \bot BC\\ \Rightarrow BC \bot \left( {OAH} \right) \Rightarrow BC \bot AH\end{array}\)
Vận dụng 3
1. Nội dung câu hỏi
Nếu cách tìm hình chiếu vuông góc của một đoạn thẳng \(AB\) trên trần nhà xuống nền nhà bằng hai dây dọi.
2. Phương pháp giải
Sử dụng phép chiếu vuông góc.
3. Lời giải chi tiết
Thả dây dọi từ điểm \(A\) và đánh dấu điểm \(A'\) nơi đầu quả dọi chạm sàn.
Thả dây dọi từ điểm \(B\) và đánh dấu điểm \(B'\) nơi đầu quả dọi chạm sàn.
Khi đó đoạn thẳng \(A'B'\) là hình chiếu vuông góc của một đoạn thẳng \(AB\) trên trần nhà xuống nền nhà.
SBT tiếng Anh 11 mới tập 2
Tải 10 đề kiểm tra 15 phút - Chương VIII - Hóa học 11
Bài 9: Phương pháp tách biệt và tinh chế hợp chất hữu cơ
CHƯƠNG III - DÒNG ĐIỆN TRONG CÁC MÔI TRƯỜNG
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Hóa học lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11