Hoạt động 5
1. Nội dung câu hỏi
a) Với \(h \ne 0,\) biến đổi hiệu \(\sin \left( {x + h} \right) - \sin x\) thành tích.
b) Sử dụng công thức giới hạn \(\mathop {\lim }\limits_{h \to 0} \frac{{\sin h}}{h} = 1\) và kết quả của câu a, tính đạo hàm của hàm số y = sin x tại điểm x bằng định nghĩa.
2. Phương pháp giải
- Công thức lượng giác \(\sin a - \sin b = 2\cos \frac{{a + b}}{2}.\sin \frac{{a - b}}{2}\)
- \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)
3. Lời giải chi tiết
a) \(\sin \left( {x + h} \right) - \sin x = 2\cos \frac{{2x + h}}{2}.\sin \frac{h}{2}\)
b) Với \({x_0}\) bất kì, ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin x - \sin {x_0}}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{2\cos \frac{{x + {x_0}}}{2}.\sin \frac{{x - {x_0}}}{2}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin \frac{{x - {x_0}}}{2}}}{{\frac{{x - {x_0}}}{2}}}.\mathop {\lim }\limits_{x \to {x_0}} \cos \frac{{x + {x_0}}}{2} = \cos {x_0}\end{array}\)
Vậy hàm số y = sin x có đạo hàm là hàm số \(y' = \cos x\).
Luyện tập 3
1. Nội dung câu hỏi
Tính đạo hàm của hàm số \(y = \sin \left( {\frac{\pi }{3} - 3x} \right).\)
2. Phương pháp giải
Sử dụng công thức \(\left( {\sin u} \right)' = u'.\cos u\)
3. Lời giải chi tiết
\(y' = {\left( {\frac{\pi }{3} - 3x} \right)^,}\cos \left( {\frac{\pi }{3} - 3x} \right) = - 3\cos \left( {\frac{\pi }{3} - 3x} \right)\).
Hoạt động 6
1. Nội dung câu hỏi
Bằng cách viết \(y = \cos x = \sin \left( {\frac{\pi }{2} - x} \right),\) tính đạo hàm của hàm số \(y = \cos x.\)
2. Phương pháp giải
Sử dụng công thức \(\left( {\sin u} \right)' = u'.\cos u\)
3. Lời giải chi tiết
\(y' = \left( {\cos x} \right)' = {\left( {\frac{\pi }{2} - x} \right)^,}\cos \left( {\frac{\pi }{2} - x} \right) = - \cos \left( {\frac{\pi }{2} - x} \right) = - \sin x\).
Luyện tập 4
1. Nội dung câu hỏi
Tính đạo hàm của hàm số \(y = 2\cos \left( {\frac{\pi }{4} - 2x} \right).\)
2. Phương pháp giải
Sử dụng công thức \(\left( {\cos u} \right)' = - u'.\sin u\)
3. Lời giải chi tiết
\(y' = - 2{\left( {\frac{\pi }{4} - 2x} \right)^,}\sin \left( {\frac{\pi }{4} - 2x} \right) = 4\sin \left( {\frac{\pi }{4} - 2x} \right)\).
Hoạt động 7
1. Nội dung câu hỏi
a) Bằng cách viết \(y = \tan x = \frac{{\sin x}}{{\cos x}}\,\,\,\left( {x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right),\) tính đạo hàm của hàm số \(y = \tan x.\)
b) Sử dụng đẳng thức \(\cot x = \tan \left( {\frac{\pi }{2} - x} \right)\) với \(x \ne k\pi \left( {k \in \mathbb{Z}} \right),\) tính đạo hàm của hàm số \(y = \cot x.\)
2. Phương pháp giải
- Sử dụng công thức \(\left( {\sin x} \right)' = \cos x,\left( {\cos x} \right)' = - \sin x\)
- Sử dụng quy tắc \({\left( {\frac{u}{v}} \right)^,} = \frac{{u'v - uv'}}{{{v^2}}}\)
3. Lời giải chi tiết
a) \(y' = \left( {\tan x} \right)' = {\left( {\frac{{\sin x}}{{\cos x}}} \right)^,} = \frac{{\left( {\sin x} \right)'.\cos x - \sin x.\left( {\cos x} \right)'}}{{{{\cos }^2}x}} = \frac{{{{\cos }^2}x + {{\sin }^2}x}}{{{{\cos }^2}x}} = \frac{1}{{{{\cos }^2}x}}\)
b) \(\left( {\cot x} \right)' = {\left[ {\tan \left( {\frac{\pi }{2} - x} \right)} \right]^,} = \frac{{ - 1}}{{{{\cos }^2}\left( {\frac{\pi }{2} - x} \right)}} = - \frac{1}{{{{\sin }^2}x}}\) (dựa vào ý a).
Luyện tập 5
1. Nội dung câu hỏi
Tính đạo hàm của hàm số \(y = 2{\tan ^2}x + 3\cot \left( {\frac{\pi }{3} - 2x} \right).\)
2. Phương pháp giải
Sử dụng công thức \(\begin{array}{l}\left( {\tan x} \right)' = \frac{1}{{{{\cos }^2}x}};\\\left( {\cot u} \right)' = - \frac{{u'}}{{{{\sin }^2}u}}\end{array}\)
3. Lời giải chi tiết
\(\begin{array}{l}y' = 2\left( {{{\tan }^2}x} \right)' + 3\left[ {\cot \left( {\frac{\pi }{3} - 2x} \right)} \right]' = 2.2\tan x.\left( {\tan x} \right)' + 3.\frac{{ - \left( {\frac{\pi }{3} - 2x} \right)'}}{{{{\sin }^2}\left( {\frac{\pi }{3} - 2x} \right)}}\\ = 4\tan x.\frac{1}{{{{\cos }^2}x}} + \frac{6}{{{{\sin }^2}\left( {\frac{\pi }{3} - 2x} \right)}}\end{array}\).
Vận dụng 1
1. Nội dung câu hỏi
Một vật chuyển động có phương trình \(s\left( t \right) = 4\cos \left( {2\pi t - \frac{\pi }{8}} \right)\left( m \right),\) với t là thời gian tính bằng giây. Tính vận tốc của vật khi t = 5 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).
2. Phương pháp giải
- Ý nghĩa vật lí: \(v = s'\)
- Công thức \(\left( {\cos u} \right)' = - u'.\sin u\)
3. Lời giải chi tiết
Ta có
\(v\left( t \right) = s'\left( t \right) = 4\left[ {\cos \left( {2\pi t - \frac{\pi }{8}} \right)} \right]' = - 4\left( {2\pi t - \frac{\pi }{8}} \right)'.\sin \left( {2\pi t - \frac{\pi }{8}} \right) = - 8\pi \sin \left( {2\pi t - \frac{\pi }{8}} \right)\)
Vậy vận tốc của vật khi t = 5 giây là
\(v\left( 5 \right) = - 8\pi \sin \left( {10\pi - \frac{\pi }{8}} \right) \approx 9,6\)(m/s).
Phần 2. Chế tạo cơ khí
Chủ đề: Sử dụng các yếu tố tự nhiên, dinh dưỡng để rèn luyện sức khỏe và phát triển thể chất
SBT Toán 11 - Cánh Diều tập 1
CHƯƠNG V: HIĐROCABON NO
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11