Hoạt động 5
1. Nội dung câu hỏi
a) Sử dụng máy tính cầm tay, hoàn thành bảng sau vào vở (làm tròn kết quả đến chữ số thập phân thứ năm).
b) Từ kết quả quả ở câu a, có dự đoán gì về tính chất của phép tính luỹ thừa với số mũ thực?
2. Phương pháp giải
Sử dụng máy tính cầm tay.
3. Lời giải chi tiết
a)
\(\begin{array}{l}{a^\alpha }.{a^\beta } = {3^{\sqrt 2 }}{.3^{\sqrt 3 }} \approx 31,70659\\{a^\alpha }:{a^\beta } = {3^{\sqrt 2 }}:{3^{\sqrt 3 }} \approx 0,70527\\{a^{\alpha + \beta }} = {3^{\sqrt 2 + \sqrt 3 }} \approx 31,70659\\{a^{\alpha - \beta }} = {3^{\sqrt 2 - \sqrt 3 }} \approx 0,70527\end{array}\).
b) Ta thấy: \({a^\alpha }.{a^\beta } = {a^{\alpha + \beta ..}},{a^\alpha }:{a^\beta } = {a^{\alpha - \beta }}\).
Ta dự đoán tính chất của phép tính luỹ thừa với số mũ thực có tính chất tương tự với phép tính luỹ thừa với số mũ tự nhiên.
Thực hành 6
1. Nội dung câu hỏi
Viết các biểu thức sau dưới dạng một luỹ thừa \(\left( {a > 0} \right)\):
a) \({a^{\frac{3}{5}}}.{a^{\frac{1}{2}}}:{a^{ - \frac{2}{5}}}\);
b) \(\sqrt {{a^{\frac{1}{2}}}\sqrt {{a^{\frac{1}{2}}}\sqrt a } } \).
2. Phương pháp giải
Sử dụng tính chất của phép tính luỹ thừa với số mũ thực.
3. Lời giải chi tiết
a) \({a^{\frac{3}{5}}}.{a^{\frac{1}{2}}}:{a^{ - \frac{2}{5}}} = {a^{\frac{3}{5} + \frac{1}{2} - \left( { - \frac{2}{5}} \right)}} = {a^{\frac{3}{2}}}\)
b) \(\sqrt {{a^{\frac{1}{2}}}\sqrt {{a^{\frac{1}{2}}}\sqrt a } } = \sqrt {{a^{\frac{1}{2}}}\sqrt {{a^{\frac{1}{2}}}.{a^{\frac{1}{2}}}} } = \sqrt {{a^{\frac{1}{2}}}\sqrt {{a^{\frac{1}{2} + \frac{1}{2}}}} } = \sqrt {{a^{\frac{1}{2}}}\sqrt a } = \sqrt {{a^{\frac{1}{2}}}.{a^{\frac{1}{2}}}} = \sqrt a \).
Thực hành 7
1. Nội dung câu hỏi
Rút gọn biểu thức: \({\left( {{x^{\sqrt 2 }}y} \right)^{\sqrt 2 }}\left( {9{y^{ - \sqrt 2 }}} \right)\) (với \(x,y > 0\)).
2. Phương pháp giải
Sử dụng tính chất của phép tính luỹ thừa với số mũ thực.
3. Lời giải chi tiết
\({\left( {{x^{\sqrt 2 }}y} \right)^{\sqrt 2 }}\left( {9{y^{ - \sqrt 2 }}} \right) = {\left( {{x^{\sqrt 2 }}} \right)^{\sqrt 2 }}{y^{\sqrt 2 }}.9{y^{ - \sqrt 2 }} = 9{x^{\sqrt 2 .\sqrt 2 }}{y^{\sqrt 2 + \left( { - \sqrt 2 } \right)}} = 9{x^2}{y^0} = 9{x^2}\).
Vận dụng 2
1. Nội dung câu hỏi
Tại một vùng biển, giả sử cường độ ánh sáng \(I\) thay đổi theo độ sâu theo công thức \(I = {I_0}{.10^{ - 0,3{\rm{d}}}}\), trong đó \(d\) là độ sâu (tính bằng mét) so với mặt hồ, \({I_0}\) là cường độ ánh sáng tại mặt hồ.
a) Tại độ sâu 1 m, cường độ ánh sáng gấp bao nhiều lần \({I_0}\)?
b) Cường độ ánh sáng tại độ sâu 2 m gấp bao nhiêu lần so với tại độ sâu 10 m? Làm tròn kết quả đến hai chữ số thập phân.
2. Phương pháp giải
Thay \(d\) bằng các giá trị cụ thể rồi tính.
3. Lời giải chi tiết
a) Với \(d = 1\) ta có: \(I = {I_0}{.10^{ - 0,3.1}} = {I_0}{.10^{ - 0,3}}\).
Vậy tại độ sâu 1 m, cường độ ánh sáng gấp \({10^{ - 0,3}}\) lần \({I_0}\).
b) Với \(d = 2\) ta có: \(I = {I_0}{.10^{ - 0,3.2}} = {I_0}{.10^{ - 0,6}}\).
Với \(d = 10\) ta có: \(I = {I_0}{.10^{ - 0,3.10}} = {I_0}{.10^{ - 3}}\).
Vậy cường độ ánh sáng tại độ sâu 2 m gấp cường độ ánh sáng tại độ sâu 10 m số lần là:
\(\left( {{I_0}{{.10}^{ - 0,6}}} \right):\left( {{I_0}{{.10}^{ - 3}}} \right) = {10^{ - 0,6}}:{10^{ - 3}} = {10^{ - 0,6 - \left( { - 3} \right)}} = {10^{2,4}} \approx 251,19\) (lần).
Chuyên đề 3. Danh nhân trong lịch sử Việt Nam
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
Unit 7: Artists
Chương 2. Chủ nghĩa xã hội từ năm 1917 đến nay
Chương 4. Hydrocarbon
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11