Bài 35. Sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác
Bài 31. Quan hệ giữa góc và cạnh đối diện trong một tam giác
Bài tập cuối chương IX
Bài 32. Quan hệ giữa đường vuông góc và đường xiên
Luyện tập chung trang 70
Luyện tập chung trang 82
Bài 33. Quan hệ giữa ba cạnh của một tam giác
Bài 34. Sự đồng quy của ba đường trung tuyến, ba đường phân giác trong một tam giác
6. Nghiệm của đa thức một biến
HĐ 4
HĐ 4
Xét đa thức G(x) = x2 – 4. Giá trị của biểu thức G(x) tại x =3 còn gọi là giá trị của đa thức G(x) tại x =3 và được kí hiệu là G(3). Như vậy, ta có: G(3) = 32 - 4 = 5
Tính các giá trị G(-2); G(1); G(0); G(1); G(2).
Phương pháp giải:
Thay từng giá trị của x vào đa thức x2 – 4
Lời giải chi tiết:
G(-2) = (-2)2 – 4 = 4 – 4 = 0;
G(1) = 12 – 4 = 1 – 4 = -3;
G(0) = 02 – 4 = 0 – 4 = -4;
G(1) = 12 – 4 = 1- 4 = -3;
G(2) = 22 – 4 = 4 – 4 = 0
HĐ 5
HĐ 5
Với giá trị nào của c thì G(x) có giá trị bằng 0?
Phương pháp giải:
Xét các giá trị x xem tại x = ? thì G(x) = 0
Lời giải chi tiết:
Tại x = - 2 và x = 2 thì G(x) có giá trị bằng 0.
Luyện tập 6
Luyện tập 6
Phương pháp giải:
+ Nghiệm của đa thức là giá trị của biến làm cho đa thức có giá trị bằng 0
Chú ý: Đa thức có hệ số tự do bằng 0 thì có nghiệm x = 0
Lời giải chi tiết:
1. F(-1) = 2.(-1)2 – 3. (-1) – 2 = 2.1 + 3 – 2 = 3
F(0) = 2. 02 – 3 . 0 – 2 = -2
F(1) = 2.12 – 3.1 – 2 = 2 – 3 – 2 = -3
F(2) = 2.22 – 3.2 – 2 = 8 – 6 – 2 = 0
Vì F(2) = 0 nên 0 là 1 nghiệm của đa thức F(x)
2. Vì đa thức E(x) có hệ số tự do bằng 0 nên có một nghiệm là x = 0.
Vận dụng
Vận dụng
Trở lại bài toán mở đầu, hãy thực hiện các yêu cầu sau:
a) Xác định bậc, hệ số cao nhất và hệ số tự do của đa thức H(x) = -5x2 + 15x
b) Tại sao x = 0 là một nghiệm của đa thức H(x)? Kết quả đó nói lên điều gì?
c) Tính giá trị của H(x) khi x =1; x = 2 và x = 3 để tìm nghiệm khác 0 của H(x). Nghiệm ấy có ý nghĩa gì? Từ đó hãy trả lời câu hỏi của bài toán.
Phương pháp giải:
a) + Bậc của đa thức là bậc của hạng tử có bậc cao nhất
+ Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất
+ Hệ số tự do là hệ số của hạng tử bậc 0.
b) Đa thức có hệ số tự do bằng 0 thì có nghiệm x = 0
c) Nghiệm của đa thức là giá trị của biến làm cho đa thức có giá trị bằng 0
Lời giải chi tiết:
a) + Bậc của đa thức là: 2
+ Hệ số cao nhất là: -5
+ Hệ số tự do là: 0
b) Vì đa thức có hệ số tự do bằng 0 nên có nghiệm x = 0
Điều này nói lên: Tại thời điểm bắt đầu ném thì vật ở mặt đất.
c) H(1) = -5.12 + 15.1 = -5 + 15 = 10
H(2) = -5.22 + 15.2 = -20 + 30 = 10
H(3) = -5.32 + 15.3 = -45 + 45 = 0
Vì H(3) = 0 nên x = 3 là nghiệm của H(x).
Nghiệm này có ý nghĩa: Tại thời điểm sau khi ném vật 3 giây thì vật trở lại mặt đất.
Vậy sau 3 giây kể từ khi được ném lên, vật sẽ rơi trở lại mặt đất.
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Địa lí lớp 7
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 7
Chương 2. Số thực
Phần Lịch sử
Bài 9. Tùy bút và tản văn
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Cánh diều Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7