Toán 7 tập 2 - Cánh diều

Giải mục I trang 74, 75 SGK Toán 7 tập 2 - Cánh diều

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 1
LT - VD 1
HĐ 2
LT - VD 2

I. Quan hệ giữa góc và cạnh đối diện trong một tam giác

Lựa chọn câu hỏi để xem giải nhanh hơn
HĐ 1
LT - VD 1
HĐ 2
LT - VD 2

HĐ 1

Quan sát tam giác ABCHình 17.

 

a) So sánh hai cạnh ABAC.

b) So sánh góc B (đối diện với cạnh AC) và góc C (đối diện với cạnh AB). 

 

 

Phương pháp giải:

a) Dựa vào độ dài cạnh đã cho để so sánh hai cạnh ABAC.

b) Tam giác ABC là tam giác có một góc vuông nên hai góc còn lại sẽ nhỏ hơn 90°.

 

 

Lời giải chi tiết:

a) Trong tam giác ABC:

 \(AB = 3\) cm, \(AC = 5\) cm.

Vậy AB < AC.

b) Trong tam giác ABC có \(\widehat B = 90^\circ \)mà tổng ba góc trong một tam giác bằng 180°.

\(\Rightarrow\)  Góc C < 90°. Hay \(\widehat B > \widehat C\). 

LT - VD 1

Cho tam giác MNP có \(MN = 4\)cm, \(NP = 5\)cm, \(MP = 6\) cm. Tìm góc nhỏ nhất, góc lớn nhất của tam giác MNP.

 

 

Phương pháp giải:

Góc lớn nhất trong tam giác là góc đối diện với cạnh lớn nhất trong tam giác.

Góc nhỏ nhất trong tam giác là góc đối diện với cạnh nhỏ nhất trong tam giác.

 

 

Lời giải chi tiết:

Trong tam giác MNP: \(MN < NP < MP\).

\(\Rightarrow\) Cạnh MN nhỏ nhất, MP lớn nhất trong tam giác MNP.

Vậy góc nhỏ nhất của tam giác MNP là góc P (đối diện với cạnh MN), góc lớn nhất của tam giác MNP là góc N (đối diện với cạnh MP

 

HĐ 2

Quan sát tam giác ABC Hình 19.

 

a) So sánh hai góc BC.

b) So sánh cạnh AB (đối diện với góc C) và cạnh AC (đối diện với góc B).

 

 

Phương pháp giải:

a) Tam giác ABC là tam giác có một góc vuông nên hai góc còn lại sẽ nhỏ hơn 90°.

b) Học sinh có thể dùng thước kẻ (có chia vạch đo) để so sánh hai cạnh hoặc dựa vào độ dài được kẻ của các cạnh trên hình (mỗi một cạnh ô vuông là 1 cm).

 

 

Lời giải chi tiết:

a) Trong tam giác ABC có \(\widehat B = 90^\circ \)mà tổng ba góc trong một tam giác bằng 180°.

\(\Rightarrow\) Góc C < 90°. Hay \(\widehat B > \widehat C\).

b) Ta có: \(AB = 3\)cm, \(AC = 5\) cm. Vậy AB < AC.

LT - VD 2

a) Cho tam giác DEG có góc E là góc tù. So sánh DEDG.

b) Cho tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Tìm cạnh nhỏ nhất, cạnh lớn nhất của tam giác MNP.

 

 

Phương pháp giải:

a) So sánh hai góc đối diện với hai cạnh để so sánh hai cạnh. (Góc đối diện với cạnh lớn hơn thì cạnh lớn hơn)

b) Cạnh nhỏ nhất trong tam giác là cạnh đối diện với góc nhỏ nhất trong tam giác.

Cạnh lớn nhất trong tam giác là cạnh đối diện với góc lớn nhất trong tam giác.

 

 

Lời giải chi tiết:

a)

 

Trong tam giác DEG có góc E là góc tù (góc > 90°). Mà DG là cạnh đối diện với góc E nên DG là cạnh lớn nhất trong tam giác.

Vậy DE < DG.

b)

Tam giác MNP có \(\widehat M = 56^\circ \), \(\widehat N = 65^\circ \). Mà tổng ba góc trong một tam giác bằng 180°. Vậy \(\widehat P = 180^\circ  - 56^\circ  - 65^\circ  = 59^\circ \).

Ta thấy: \(\widehat M < \widehat P < \widehat N\). Hay cạnh nhỏ nhất của tam giác MNPNP (đối diện với góc M), cạnh lớn nhất của tam giác MNP MP (đối diện với góc N).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved