Hoạt động thực hành và trải nghiệm. Chủ đề 1: Một số hình thức khuyến mãi trong kinh doanh
Bài 8. Đại lượng tỉ lệ nghịch
Bài 4. Làm tròn và ước lượng
Bài 6. Dãy tỉ số bằng nhau
Bài 3. Giá trị tuyệt đối của một số thực
Bài 7. Đại lượng tỉ lệ thuận
Bài 1. Số vô tỉ. Căn bậc hai số học
Bài 5. Tỉ lệ thức
Bài 2. Tập hợp R các số thực
Bài tập cuối chương II
HĐ 4
HĐ 4
Hoạt động 4
Thực hiện các phép tính sau:
a)\(\frac{1}{8}.\frac{3}{5}\) b)\(\frac{{ - 6}}{7}:\left( { - \frac{5}{3}} \right);\) c)\(0,6.\left( { - 0,15} \right)\).
Phương pháp giải:
- Câu a và b: áp dụng quy tắc nhân, chia hai phân số.
- Câu c: Đưa về dạng phép nhân hai phân số, rồi thực hiện phép tính.
Lời giải chi tiết:
a)\(\frac{1}{8}.\frac{3}{5} = \frac{{1.3}}{{8.5}} = \frac{3}{{40}}\)
b)\(\frac{{ - 6}}{7}:\left( { - \frac{5}{3}} \right) = \frac{{ - 6}}{7}.\frac{{ - 3}}{5} = \frac{{18}}{{35}}\)
c)\(0,6.\left( { - 0,15} \right) = \frac{6}{{10}}.\frac{{ - 15}}{{100}} = \frac{{ - 90}}{{1000}} = \frac{{ - 9}}{{100}}\).
LT - VD 4
LT - VD 4
Luyện tập vận dụng 4
Giải bài toán nêu trong phần mở đầu.
Phương pháp giải:
Độ dài đèo Hải Vân = Độ dài hầm Hải Vân : \(\frac{{157}}{{500}}\).
Lời giải chi tiết:
Độ dài đèo Hải Vân là:
\(6,28:\frac{{157}}{{500}} = \frac{{157}}{{25}}.\frac{{500}}{{157}} = \frac{{3135}}{{157}} \approx 20\,\left( {km} \right)\)
LT - VD 5
LT - VD 5
Luyện tập vận dụng 5
Một ô tô đi từ tỉnh A đến tỉnh B. Trong 1 giờ đầu, ô tô đã đi được \(\frac{2}{5}\) quãng đường. Hỏi vẫn với vận tốc đó, ô tô phải mất bao lâu để đi hết cả quãng đường AB?
Phương pháp giải:
Thời gian ô tô đi hết cả quãng đường AB = Thời gian đi : Quãng đường đi được.
Lời giải chi tiết:
Thời gian ô tô đi hết cả quãng đường AB là: \(1:\frac{2}{5} = \frac{5}{2}\)(h)
HĐ 5
HĐ 5
Hoạt động 5
Nêu tính chất của phép nhân các số nguyên.
Phương pháp giải:
Nhớ lại tính chất của phép nhân các số nguyên đã học.
Lời giải chi tiết:
Tính chất giao hoán: \(a.b = b.a.\)
Tính chất kết hợp: \((a.b).c = a.(b.c).\)
Nhân với số 1: \(a.1 = 1.a = a\).
Tính chất phân phối của phép nhân đối với phép cộng: \(a.(b + c) = a.b + a.c.\)
LT - VD 6
LT - VD 6
Luyện tập vận dụng 6
Tính một cách hợp lí:
a)\(\frac{7}{3}.\left( { - 2,5} \right).\frac{6}{7};\)
b)\(0,8.\frac{{ - 2}}{9} - \frac{4}{5}.\frac{7}{9} - 0,2.\)
Phương pháp giải:
Tính chất giao hoán: \(a.b = b.a.\)
Tính chất kết hợp: \((a.b).c = a.(b.c).\)
Tính chất phân phối của phép nhân đối với phép trừ: \(a.(b - c) = a.b - a.c.\)
Lời giải chi tiết:
a)\(\frac{7}{3}.\left( { - 2,5} \right).\frac{6}{7} = \frac{7}{3}.\frac{6}{7}.\left( { - 2,5} \right) = 2.\left( { - 2,5} \right) = - 5\)
b)
\(\begin{array}{l}0,8.\frac{{ - 2}}{9} - \frac{4}{5}.\frac{7}{9} - 0,2\\ = \frac{4}{5}.\frac{{ - 2}}{9} - \frac{4}{5}.\frac{7}{9}-\frac{2}{10}\\ = \frac{4}{5}.\left( {\frac{{ - 2}}{9} - \frac{7}{9}} \right) -\frac{1}{5}\\ = \frac{4}{5}.\left( { - 1} \right)-\frac{1}{5} \\= \frac{{ - 4}}{5}-\frac{1}{5}\\=\frac{-5}{5}\\=-1.\end{array}\)
HĐ 6
HĐ 6
Hoạt động 6
Nêu phân số nghịch đảo của phân số \(\frac{m}{n}\) \(\left( {m \ne 0;\,n \ne 0} \right)\).
Phương pháp giải:
Phân số cần tìm là phân số nhân với phân số \(\frac{m}{n}\) được tích bằng 1.
Lời giải chi tiết:
Phân số nghịch đảo của phân số \(\frac{m}{n}\) là: \(\frac{n}{m}\)
LT - VD 7
LT - VD 7
Luyện tập vận dụng 7
Tìm số nghịch đảo của mỗi số hữu tỉ sau:
a)\(2\frac{1}{5}\); b)\( - 13\)
Phương pháp giải:
a)Đưa hỗn số về phân số rồi tìm số nghịch đảo
Phân số nghịch đảo của phân số \(\frac{m}{n}\) là: \(\frac{n}{m}\)\(\left( {m \ne 0;\,n \ne 0} \right)\)
b) Số nghịch đảo của số a là: \(\frac{1}{a}\left( {a \ne 0} \right)\).
Lời giải chi tiết:
a)Ta có: \(2\frac{1}{5} = \frac{{11}}{5}\)
Số nghịch đảo của \(2\frac{1}{5}\) là: \(\frac{5}{{11}}\).
b) Số nghịch đảo của \( - 13\) là: \(\frac{{ - 1}}{{13}}\)
Chú ý: Ta phải chuyển hỗn số về phân số trước khi tìm số nghịch đảo.
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7