Hoạt động thực hành và trải nghiệm. Chủ đề 1: Một số hình thức khuyến mãi trong kinh doanh
Bài 8. Đại lượng tỉ lệ nghịch
Bài 4. Làm tròn và ước lượng
Bài 6. Dãy tỉ số bằng nhau
Bài 3. Giá trị tuyệt đối của một số thực
Bài 7. Đại lượng tỉ lệ thuận
Bài 1. Số vô tỉ. Căn bậc hai số học
Bài 5. Tỉ lệ thức
Bài 2. Tập hợp R các số thực
Bài tập cuối chương II
Hoạt động 2
Cho biết x, y là hai đại lượng tỉ lệ nghịch với nhau:
x | x1 = 20 | x2 = 18 | x3 = 15 | x4 = 5 |
y | y1 = 9 | y2 = ? | y3 = ? | y4 = ? |
a) Hãy xác định hệ số tỉ lệ
b) Tìm số thích hợp cho ? trong bảng trên
c) So sánh các tỉ số: x1y1 ; x2y2 ; x3y3 ; x4y4.
d) So sánh các tỉ số: \(\frac{{{x_1}}}{{{x_2}}}\) và \(\frac{{{y_2}}}{{{y_1}}}\); \(\frac{{{x_1}}}{{{x_3}}}\) và \(\frac{{{y_3}}}{{{y_1}}}\); \(\frac{{{x_3}}}{{{x_4}}}\) và \(\frac{{{y_4}}}{{{y_3}}}\)
Phương pháp giải:
+ Nếu đại lượng y liên hệ với đại lượng x theo công thức \(y = \frac{a}{x}\) hay x.y = a (a là hằng số khác 0) thì y tỉ lệ nghịch với x theo hệ số tỉ lệ a
+ Tính các tích rồi so sánh
+ Tính các tỉ số rồi so sánh
Lời giải chi tiết:
a) Hệ số tỉ lệ a = x1.y1 = 20. 9 =180
b) Ta có: y= \(\frac{{180}}{x}\)
Khi x2 = 18 thì y2 = \(\frac{{180}}{{{x_2}}} = \frac{{180}}{{18}} = 10\)
Khi x3 = 15 thì y3 = \(\frac{{180}}{{{x_3}}} = \frac{{180}}{{15}} = 12\)
Khi x4 = 18 thì y4 = \(\frac{{180}}{{{x_4}}} = \frac{{180}}{5} = 36\)
c) Tích x1.y1 = 20. 9 =180
x2.y2 = 18.10 =180
x3.y3 = 15.12 =180
x4.y4 = 5.36 =180
Vậy x1y1 = x2y2 = x3y3 = x4y4 =180
d) Ta có:
\(\frac{{{x_1}}}{{{x_2}}}\) = \(\frac{{20}}{{18}}\)=\(\frac{{10}}{9}\) ; \(\frac{{{y_2}}}{{{y_1}}}\)= \(\frac{{10}}{9}\)
\(\frac{{{x_1}}}{{{x_3}}}\) = \(\frac{{20}}{{15}}\)=\(\frac{4}{3}\) ; \(\frac{{{y_3}}}{{{y_1}}}\) = \(\frac{{12}}{9}\) = \(\frac{4}{3}\)
\(\frac{{{x_3}}}{{{x_4}}}\) = \(\frac{{15}}{5}\) = 3; \(\frac{{{y_4}}}{{{y_3}}}\)= \(\frac{{36}}{{12}}\) = 3
Vậy \(\frac{{{x_1}}}{{{x_2}}}\) = \(\frac{{{y_2}}}{{{y_1}}}\); \(\frac{{{x_1}}}{{{x_3}}}\)= \(\frac{{{y_3}}}{{{y_1}}}\); \(\frac{{{x_3}}}{{{x_4}}}\) = \(\frac{{{y_4}}}{{{y_3}}}\)
Luyện tập vận dụng 2
Một ô tô dự định đi từ A đến B trong 6 giờ. Nhưng thực tế ô tô đi với vận tốc gấp \(\frac{4}{3}\) vận tốc dự định. Tính thời gian ô tô đã đi.
Phương pháp giải:
Thời gian ô tô đi và vận tốc đi trên cùng 1 quãng đường là 2 đại lượng tỉ lệ nghịch
Sử dụng tính chất 2 đại lượng tỉ lệ nghịch: \(\frac{{{x_1}}}{{{x_2}}}\) = \(\frac{{{y_2}}}{{{y_1}}}\)
Lời giải chi tiết:
Vì v. t = s không đổi nên vận tốc và thời gian ô tô đi là 2 đại lượng tỉ lệ nghịch
Theo tính chất 2 đại lượng tỉ lệ nghịch, ta có:
Skills Practice C
Bài 7: Đoàn kết, tương trợ
Chủ đề 7: Góp phần giảm thiểu hiệu ứng nhà kính
SBT VĂN TẬP 2 - CÁNH DIỀU
Chương III. Góc và đường thẳng song song
Đề thi, đề kiểm tra Toán - Chân trời sáng tạo Lớp 7
Bài tập trắc nghiệm Toán - Kết nối tri thức
Đề thi, đề kiểm tra Toán - Cánh diều Lớp 7
Bài tập trắc nghiệm Toán - Cánh diều
Đề thi, đề kiểm tra Toán - Kết nối tri thức Lớp 7
Bài tập trắc nghiệm Toán - Chân trời sáng tạo
Bài giảng ôn luyện kiến thức môn Toán lớp 7
Lý thuyết Toán Lớp 7
SBT Toán - Cánh diều Lớp 7
SBT Toán - Chân trời sáng tạo Lớp 7
SBT Toán - Kết nối tri thức Lớp 7
SGK Toán - Chân trời sáng tạo Lớp 7
SGK Toán - Kết nối tri thức Lớp 7
Tài liệu Dạy - học Toán Lớp 7
Vở thực hành Toán Lớp 7