Hoạt động 5
Lấy đường thẳng \(\Delta \)và một điểm F không thuộc \(\Delta \). Lấy một ê ke ABC (vuông ở A) và một đoạn dây không đàn hồi, có độ dài bằng AB. Đính một đầu dây vào điểm F, đầu kia vào đỉnh B của ê ke. Đặt ê ke sao cho cạnh AC nằm trên \(\Delta \), lấy đầu bút chì (kí hiệu là điểm M) ép sát sợi dây vào cạnh AB và giữ căng sợi dây. Lúc này, sợi dây chính là đường gấp khúc BMF. Cho cạnh AC của ê ke trượt trên \(\Delta \) (Hình 55). Khi đó, đầu bút chì M sẽ vạch nên một đường mà ta gọi là đường parabol. Khi M thay đổi, có nhận xét gì về khoảng cách từ M đến F và khoảng cách từ M đến đường thẳng \(\Delta \)?
Lời giải chi tiết:
Khi M thay đổi, ta có: \(MA + MB = MF + MB\left( { = AB} \right)\). Do đó \(MA = MF\).
Luyện tập – vận dụng 3
Viết phương trình các parabol sau đây dưới dạng chính tắc:
a) \(x = \frac{{{y^2}}}{4}\)
b) \(x-y^2=0\)
Lời giải chi tiết:
a) \(x = \frac{{{y^2}}}{4} \Leftrightarrow {y^2} = 4x\)
Vậy dạng chính tắc của parabol là: \({y^2} = 4x\)
b) \(x - {y^2} = 0 \Leftrightarrow {y^2} = x\)
Vậy dạng chính tắc của parabol là: \({y^2} = x\)
Unit 7: Viet Nam and International Organisations
Chương 2. Mô tả chuyển động
Chương II. Động học
Test Yourself 1
Chủ đề 2: Xây dựng quan điểm sống
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Chân trời sáng tạo Lớp 10
SGK Toán - Kết nối tri thức Lớp 10