Câu hỏi mục IV trang 40, 41, 42

Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 5
Luyện tập vận dụng 2
Lựa chọn câu hỏi để xem giải nhanh hơn
Hoạt động 5
Luyện tập vận dụng 2

Hoạt động 5

Hoạt động 5

a) So sánh hai số thập phân sau: -0,617 và -0,614.

b) Nêu quy tắc so sánh 2 số thập phân hữu hạn.

Phương pháp giải:

* So sánh 2 số thập phân khác dấu: Số thập phân âm luôn nhỏ hơn số thập phân dương

* So sánh 2 số thập phân dương:

Bước 1: So sánh phần số nguyên của 2 số thập phân đó. Số thập phân nào có phần số nguyên lớn hơn thì lớn hơn

Bước 2: Nếu 2 số thập phân dương đó có phần số nguyên bằng nhau thì ta tiếp tục so sánh từng cặp chữ số ở cùng một hàng( sau dấu ","), kể từ trái sang phải cho đến khi xuất hiện cặp chữ số đầu tiên khác nhau. Ở cặp chữ số khác nhau đó, chữ số nào lớn hơn thì số thập phân chứa chữ số đó lớn hơn

*So sánh 2 số thập phân âm:

Nếu a < b thì –a > - b

Lời giải chi tiết:

a) Vì 0,617 > 0,614 nên -0,617 < -0,614

b) * So sánh 2 số thập phân khác dấu: Số thập phân âm luôn nhỏ hơn số thập phân dương

* So sánh 2 số thập phân dương:

Bước 1: So sánh phần số nguyên của 2 số thập phân đó. Số thập phân nào có phần số nguyên lớn hơn thì lớn hơn

Bước 2: Nếu 2 số thập phân dương đó có phần số nguyên bằng nhau thì ta tiếp tục so sánh từng cặp chữ số ở cùng một hàng( sau dấu ","), kể từ trái sang phải cho đến khi xuất hiện cặp chữ số đầu tiên khác nhau. Ở cặp chữ số khác nhau đó, chữ số nào lớn hơn thì số thập phân chứa chữ số đó lớn hơn

*So sánh 2 số thập phân âm:

Nếu a < b thì –a > - b

Luyện tập vận dụng 2

Luyện tập vận dụng 2

So sánh 2 số thực sau:

a) \(1,(375)\)\(1\frac{3}{8}\)

b) – 1,(27) và -1,272

Phương pháp giải:

Viết các số thực dưới dạng số thập phân. Đối với các số thập phân vô hạn tuần hoàn, ta đổi dạng viết có chu kì về dạng không viết chu kì.

Lời giải chi tiết:

a) Ta có: 1,(375) = 1,375375375…

\(1\frac{3}{8}\) = 1,375

Vì 1,375375... > 1,375 nên 1,(375) > \(1\frac{3}{8}\)

b) Ta có: -1,(27) = -1,272727…

Vì 1,272727… > 1,272 nên - 1,272727 < -1,272 hay – 1,(27) <  -1,272

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved